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Abstract 

This paper develops linear time d’etributed algo- 
rithms for a class of problems in an asynchronous commun- 
ication network. Those problems include Minimum-Weight 
Spanning Tree (MST), Leader Election, counting the 
number of network nodes, and computing a senaitive 
decomposable function (e.g. majority, parity, maximum, 
OR, AND). 

The main problem considered is ,the problem of 
finding the MST. This problem, which has been known for 
at least 9 years, is one of the most fundamental and the 
most studied problems in the field of distributed network 
algorithms. 

Any algorithm for any one of the problems ,above 
requires at least n(E-tVlogV) communication and and 
n(V) time in the genera1 network. In this paper, we 
present new algorithms, which achieve those lower bounds. 
The best previous algorithm requires 8(E+ Vlog V) in com- 
munication and e( V.log’ V) in time. 

Our result enables to improve algo:rithms for many 
other problems in distributed computing, achieving lower 
bounds on their communication and time complexities, 
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1. Introduction and Summary 

1.1. Motivation 

The problem of finding a distributed algorithm 
for a minimum weight spanning tree is a fundamental 

problem in the field of distributed network algo- 

rithms. Trees are an essential structure in various 

communication protocols, e.g. network synchroniza- 

tion [A-851), Breadth-First-Search [AG-851, and 
Deadlock R.esoIution [AM-861. For the purpose of 
disseminating information in the network, it is 
advantageous to broadcast it over a minimum-weight 
spanning tree [DM-781, [AE-861, since information 
will be delivered to every node with small communi- 

cation cost. 

The problem of finding a leader is reducible to 
the problem. of finding a spanning tree. In turn, leader 
election is an important tool for breaking symmetry 
in a distributed system. It allows application of 

highly centralized protocols in a completely decentral- 

ized environment, thus providing higher degree of 
control over the operation of the network. Among 

other systems applications, leader election is used in 
order to replace a malfunctioning central lock- 

coordinator in a distributed data-base [MMP-781, for 
finding a primary site in a replicated distributed file 

systems [AD-761, etc. 

There are other problems, which are very 
closely related to the problems of finding a spanning 
tree or finding a leader. Counting the number of net- 
work nodes is one of them. There exists a class of 
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functions, referred to as sensitive decomposable func- 

tions; such functions are sensitive to every input, but 

the influence of a set of arguments can be represented 

by a string whose size is not much bigger than the 

size of a string needed to represent just one argument. 

Examples of such functions are maximum, sum, par- 

ity, majority, OR, AND. As shown in this paper, 

complexity of finding a spanning tree, complexity of 

counting the number of network nodes and complex- 

ity of computing distributively any sensitive decom- 

posable function are all within a constant factor of 

each other. 

To summarize, construction of a spanning tree 

or finding a leader appears as a building block essen- 

tially in every complex network protocol, and is 

closely related to many problems in distributed com- 

puting. 

1.2. Existing Results 

The problem of finding a Minimum Spanning 

Tree (MST) in a distributed network has been studied 

since 1977. Dozens papers have been written on the 

subject, from [S-77],[K-78],[GHS-831 to [CT-85],[G- 

851. A truly pioneering work of Gallager, Humblet 

and Spira [GHS-831 presented an algorithm which 

requires O(E+ Vlog V) messages and Q( Vlog V) time, 

introducing very fundamental ideas and concepts into 

the field of distributed network algorithms. Some 

researchers investigated lower and upper bounds for 

leader election algorithms in special network models, 

like ring, complete network, and grid. Among the 

numerous papers, let us mention [Afek-851, [FL-841, 

[KM&8-I], [B-80). Until now, all existing algorithms 

for counting, leader election, etc. used the MST as a 

major building block and thus are dominated by its 

complexity. 

As observed already in [GHS-831, and made pre- 

cise in [AGV-871, n(E) messages are necessary in 

order to construct a spanning tree. As proved in [B- 

801 and [FL-841, n( Vlog V) messages are needed in 

order to find a leader on a ring. It follows that 

n(E+ Vlog V) messages are necessary to construct a 

spanning tree in a general network. It is also obvious 

that in a network having O(V) diameter, any distri- 

buted algorithm must take at least a(V) time, since 

this time is required just to traverse the network. 

Thus, the communication achieved in (GHS-831 is 

optimum and the time is within @(logV) factor of the 

optimum. 

For the general network model, the best algo- 

rithm currently known both for Spanning Tree and 

Minimum Weight Spanning Tree has been given by 

Chin and Ting (CT-851, and Gafni [G-85]. The time 

complexity of their algorithm is 0( T/log’ V), i.e. 
slightly better than [GHS-831, while the communica- 

tion complexity of the algorithm is still 

8(E+VlogV). The algorithm is almost optimal, 

except for 0(log’V) factor in time. [CT-851 show 

that their time bound is tight by giving an example 

of a network, on which the the algorithm runs for 

O( Vlog’ V) time. The cause of O(log’V) factor in 

time complexity in [G-85],[CT-851 is the fact that 

small trees sometimes wait for big trees. As a result, 

the waiting relations between trees has a complex 

combinatorial structure which is extremely hard to 

analyze. 

The time complexity is a very meaningful meas- 

ure for evaluating performance of a spanning tree 

algorithm, because of the nature of its applications, 

e.g. control and coordination of various network 

processes. Thus, from the theoretical point of view, it 

is challenging to reduce the time complexity of span- 

ning tree algorithms to its optimum value. 

1.3. Our Results 

The mission of finding the ultimate algorithms 

for the Minimum Spanning Tree, Counting, Leader 

Election, and other related problems is accomplished 

in the current paper. We present here a new MST 

algorithm, that requires 0 (E + Vlog V) messages and 

O(V) time, i.e. is optimal both in communication 

and time. 

Besides Spanning Tree and Minimum Spanning 

Tree, our result yields an @(log’ V) improvement in 

time complexity of other algorithms, which use Span- 

ning Tree as a subroutine. Those include Leader 

Election [FL-841, Deadlock Resolution [AM-861, 

Counting the number of network nodes, and compu- 

tation of any decomposables sensitive function. As a 

result, the algorithms for those problems reach the 

lower bounds in both time and communication com- 

plexities. Another example of a problem whose solu- 

tion is improved is the Network Partitioning problem 

[A-85] which arises in the context of network syn- 

chronization. 

Additional contribution is the following 

theorem, whose proof will be given in the full paper. 

Completeness Theorem: The communication and 

time complexities of the problems of computing dis- 

tributively a sensitive decomposable function, count- 

ing the number of network nodes and finding a span- 
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Coroilary: Any improvement in the comp;ie:sity 

of the spanning tree algorithm leadis to the same 

improvement in complexities of counting and of com- 

puting a sensitive decomposable function. 

The improved performance of our MST algo- 

rithm is due to two new techniques. The first tech- 

nique enables to estimate distributed time of a com- 

munication procedure in an asynchronous network. 

This technique has been adopted in the Acyclic Parti- 

tion algorithm of [AM-861, reducing it;s time complex- 

ity to linear (even though it does not use Spanning 

tree as subroutine). The second technique has been 

adopted in [AP-86] for estimating the size of a 

dynamically growing tree. 

Our MST algorithm consists of two stages. The 

first stage, referred to as Counting stage, finds some 

spanning tree and computes the number of nodes in 

the network. The second stage, referred to as the 

MST stage, receives as an input the number of nodes 

in the network and, using this inform.ation, finds the 

Minimum Weight Spanning Tree. Both stages 

require O(E+ VlogV) messages and O(V) time, i.e. 

are optimal both in communication and time. It is 

worth mentioning that while the two stages use simi- 

lar techniques for reducing the complexities, the algo- 

rithmic approaches taken are radically different. 

The main idea of our improvement is to avoid 

situations in which small tree waits for big tree. This 

simplifies the structure of the waiting relations 
significantly, reduces the time complexity to linear, 

and simplifies enormously the analysis. The Count- 

ing stage first finds some spanning tree and elects a 

leader in the network. Then, the number of nodes is 

computed easily. It uses different algoril;hmic 

approach compared to [G-85],[CT-851 which is 

enabled by the fact that we do not insist that the 

produced spanning tree is necessarily minimum 

weight. Thus, it is relatively “easy” to guarantee 

that smaI1 trees never wait for big trees. 

The rest of this paper is organized as follows. 

Section 2 describes the model, the complexity meas- 

ures, and the problem of finding the MST. Section 3 

presents stage 2 of the algorithm (MST), while section 

4 presents stage 1 (Counting). 

2. The problem 

2.1. The model and the the com.plexity meas- 

ures 

We consider here the standard model of static 
asynchronous network IA-85],[AG85]. This is a 
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point-to-point communication network, described by 

an undirected communication graph (YE) where the 

set of nodes V represents processors of the network 

and the set of edges E represents bidirectional non- 

interfering communication channels operating 
between neighboring nodes. No common memory is 

shared by thLe node’s processors. All the processors 

have distinct identities. However, a node does not 

know identity of its neighbors. We confine ourselves 

only to event-driven algorithms, which do not use 

time-outs, i.e. nodes cannot access a global clock in 

order to decide what to do. This is a common model 

for static communication networks [G’HS-831, [A- 

851, [AG-851. 

The following complexity measures are used to 

evaluate pertormance for distributed algorithms. The 

Communicutrion Complexity, C, is the worst case total 

number of elementary messages sent during the algo- 

rithm, where an elementary message contains at most 

O(logV) bits. The Time Complexity, T, is the max- 

imum possible number of time units from start, to t.he 

completion of the algorithm, assuming that the 

inter-message delay and the propagation delay of an 

edge is at most one time unit of some global clock. 

This assumption is used only for the purpose of 

evaluating the performance of the algorithm, but can- 

not be used to prove its correctness, since the algo- 

rithm is event-driven. 

2.2. The problem of finding the MST 

In a distributed algorithm for the Minimum 

Spanning Tree problem, each node has a copy of a 

node algorithm determining the response of the node 

to messages received at that node. Namely, the algo- 

rithm specifies which computations should be per- 

formed and which messages should be sent. The 

algorithm is started independently by all the nodes, 

perhaps at different times. At the start time, each 

node is ignorant of the global 

except for its own edges. Upon the 

algorithm, every node knows its 

minimum spanning tree. 

network topology 

termination of the 

neighbors in the 

Without loss of generality, we assume that all 

the links are assigned distinct weights with a total 

ordering defined on the domain of the weights. This 

condition guarantees uniqueness of the minimum 

spanning tree. It is easy to achieve this, as observed 

in [GHS-831, by simply assigning the weight of each 

link (i,i) as the tuple [max(i,j),min(i,j)], and compar- 

ing these tuples lexicographically. 



Similarly, one can define the problems of 

finding some spanning tree, electing a leader, counting 

the number of network nodes, and computing a sensi- 
tive decomposable function. 

3. Stage 2: Minimum Spanning Tree 

3.1. Background 

Most distributed and parallel MST algorithms 

operate according to the following scheme. The algo- 

rithm maintains a spanning forest of rooted trees, 

each tree being a sub-tree of the MST. Initially, every 

tree consists of a single node. Upon termination of 

the algorithm, there will be a single tree spanning the 

whole network. For any node, its father is the next 

node on the path to the root; root has no father. The 

tree is represented by “father” pointers, leading from 

each non-root node to its father. The best edge of a 

tree is the minimum weight edge among all edges 

leading from it to other trees. Since edge weights are 

unique, the best edge must be in the MST. In the 

course of the algorithm, every tree finds its best edge 

and hooks itself (gets “absorbed” in terminology of 

[GHS-831) onto the tree on the other side of that 

edge, becoming a sub-tree in bigger tree. This hook- 

ing is represented by the following manipulation of 

the father pointers. First, the root of the tree is 
moved to the internal endpoint of the best edge, 

changing father pointers accordingly. Second, the 

external end of the best edge becomes the father of 

the root. Note that two trees can hook onto each 

other if they both have the same best edge. Such 

edge is called the core edge [GHS-83); its endpoints 

are roots in corresponding trees. This creates a cycle 

of length two in the pointer graph. To break such 

cycle, the hooking of the root with bigger identity is 

canceled; it becomes the root of the combined tree. 

Now, all nodes in the combined tree are informed 

about the name of their new root and requested to 

look for the best edge. 

The communication and time complexity of 

election of the best edge and updating father pointers 

is linear in the size of the tree. Thus, a naive distri- 

buted implementation of that algorithm would 

reqtiire O(p) messages and time, since a tree of size 
V V 

T 
could be hooked onto other trees T times, each 

hooking requiring linear work. A classical idea, which 

is well known for sequential algorithms, e.g. Union- 

Find, is that in order to merge two trees, it is advan- 

tageous to hook the smaller tree onto the bigger one, 

thus updating only the pointers of the smaller tree. 

Thus, each time a pointer of a node is changed, the 

size of the combined tree is at least doubled; it fol- 

lows that the number of pointer changes at each node 
is at most logzV . To achieve this, one must 

somehow ensure that the best edge of a tree always 

leads to a bigger or equal tree, then it would achieve 

communication complexity of 0 (E + Vlog V) and 

time complexity of VlogV. The problem is that in 

distributed systems, it is hard to estimate the size of 

a tree; counting in a naive way would by itself require 

O(p) messages and time. 

The first solution of that problem was achieved 

in [GHS-831 using the technique of levels. The level 

of a tree containing one node is 0. If two trees of the 

same level create a core, then the level of the com- 

bined tree is increased by 1. Level is a lower bound on 

the logarithm of the cardinality of the tree and thus 

the maximum achievable level is logZV/. The algo- 

rithm guarantees that the best edge of a tree leads to 

a tree of bigger or equal level. For that purpose, a 

tree delays selection of the best edge, until all trees to 

whom best edge might lead, have bigger or equal 

level. Roughly speaking, this means that a tree stays 

completely idle, without even attempting to find the 

best edge, until some neighboring tree has smaller 

level. Notice that this delay does not introduce 

deadlocks, since trees are waiting only for trees of 

smaller level. The tree inherits the level of the tree 

on the other side of the best edge. It follows that 

each time a node participates in election of the best 

edge or any pointer manipulation, its level increases 

by 1, i.e. those operations can be done at most log,V 

times. Thus, communication complexity is 

O(E+ Vlog V) and time complexity is Vlog V. The 

reason why time complexity is not linear is that there 

might be a long chain of sub-trees of level I, each 

sub-tree hooked onto the next sub-tree on the chain, 

resulting in a tree of level 1 +l, regardless of the 

length of the chain. In particular, a tree of level 1 

with p nodes may be created. Such a tree may 

undergo log V-1 level changes, each requiring n(V) 
time. 

Chin, Ting [CT-851 and Gafni (G-851 addressed 

this problem by updating the level to the logarithm 

of the cardinality of the tree, each time that compu- 

tation of the best edge is performed. Thus, even if 

level was too low during the process of selecting the 

best edge, the situation is corrected before the next 

selection. It seems that with this idea the resulting 
algorithm should be linear in time. However, the 

time complexity is 0( Vlog’ V). The reason for the 



Iog’V factor is that updating the level of a long 

chain comes too late. Indeed, consider a long chain 

consisting of 2” sub-trees of level 10. Eventually, the 

level of the resulting tree will be set to (at least) 20; 

but this level update will take time linear in the size 

of the tree, i.e. n(220). During this period of time, a 

tree T,, of level 11 neighboring with a tree 7’i,, of 

level 10, belonging to that chain, is idle, since it waits 

until level of Tie reaches 11 (at least). Once level 

update in the chain terminates, T,, can proceed look- 

ing for its best edge. From the point of view of the 

search for the best edge at Tll, creation of the chain 

of 2” trees of level 10 caused loss of O(220) units of 

time. The only possible way that ‘i”i:L can reimburse 

itself for this loss is by hooking itself on a node in 

that chain, sub-sequently inheriting level 20. Indeed, 

in this case Z’ir waited O(2”‘) time, but at least it 

got a reward: an impressive level increase from II to 

20 ! Unfortunately, since T,, is committed to hook 

thru its minimum-weight edge, it is most likely that it 

will not be able to benefit from this opportunity. 

3.2. Our MST algorithm 

The observation above suggests that wa.iving 

the minimum weight property can help to achieve a 

linear time algorithm. Namely, instead of hooking 

itself on its minimum weight edge, each tree will hook 

itself on edge leading to the neighboring tree of max- 

imum level. Thus, if the tree waits for a long tirne, it 

will be rewarded properly. This is the main idea 
behind the Counting stage of our algorithm. The 

MST stage assumes knowledge of V, the total 

number of nodes, which is provided by the previous 

Counting stage. It has a lot of similarity with [GHS- 

831, [G-85], [CT-851. Th e only difference is that level 

increases are originated by many nodes, not only by 

the root node. 

The MST stage is performed in two phases. The 

first phase runs an algorithm identical to [GHS-831, 

and terminates when all trees reach the size of 

Y &), In this phase, we even do not bother to use 

the trick of [G-85,CT-85) since all trees are relatively 

small. The new algorithmic ideas are introduced in 

the second phase. We update the levels in a very 

accurate fashion, which prevents small trees waiting 

for big trees and speeds up the algorithm. This more 

aggressive method of level updates requires more mes- 

sages but does not increase the communication com- 

plexity, since the number of trees is small, at most 

1ogV. The only reason why the Counting stage is 

needed is that without knowing what V is, one does 
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not know when does the first phase of the MST stage 

terminate. The innovation here is that instead of 

updating level by counting the total number of nodes, 

as in [CT-85,G-851, the level is updated locally based 

on estimate of number of nodes in a sub-tree. We 

introduce two new (compared to [GHS-831) mechan- 

isms for level update, called Root-Update and Test- 

Distance. Roughly speaking, the Root-Update 

increases the lever of the root if within certain time it 

failed to find the best edge; Test-Distance increases 

level of nodes in a sub-tree whose root is far enough 

from the root of the resulting tree. The main goal is 

to guarantee that the period of time in which 1 is the 

smallest level in the network is upper-bounded by 

O(2’). 

Let us now describe the algorithm with some 

more details. Whenever a node r becomes root of a 

tree 2’ with level 1, it broadcasts an initialization 

message, containing r, I as parameters, over T. This 

message is further relayed into trees which hook 

themselves onto T. Upon receipt of this initialization 

message, a node j remembers those parameters in 

local fields L,cuc/j , Rooti , and starts execution of a 

local search procedure. This procedure either finds the 

minimum weight edge outgoing from j to a node i 

outside of T (with Rooti # Rooti) or declares that 

such node does not exists, i.e. all edges incident to j 

are internal edges in T. 

Towards that goal, node j scans its incident 
edges, not yet known to be internal edges, in the 

decreasing order of their weights. Scanning an edge 

consists of sending a special test message to the node 

k on the other side of the edge and getting the reply 

from k. That reply is negative if Rootk = r (i.e. k is 

in T) and is positive otherwise. The crucial property 

of the algorit,hm is that only nodes with level bigger 

or equal to I reply immediately to such message. A 

node k with Level!, <I delays response to that mes- 

sage until Levelk reaches 1. If this level increase at k 

is due to the hooking of k’s tree onto T, then k will 

have Rootk == r; thus the reply is negative and the 

edge to k is marked at j as “internal”. In this case, 

the search procedure is resumed, namely next edge 

(after the edge (j,k)) . IS scanned. Otherwise, if reply is 

positive, then the edge (j,k) is declared to be the 

local candidate for the best edge of T. 

The names of the local candidates are collected 

at the root. If none of the tree nodes could find a 

local candidate, then the algorithm terminates, since 

the tree spans the whole network and thus is the 

MST. Otherwise, the root chooses the one with the 



minimum weight, say edge (v,w) with v being the 

internal endpoint, as the best edge of T. Next, a spe- 

cial message travels to the internal endpoint v of that 

edge, reversing all father pointers on its way and 

transforming v into a root of T. When v receives 

that message, it acts as follows. If the edge (v,w) is 

a core edge and v is its biggest endpoint, u does not 

hook itself, since it is the root of the resulting tree; its 

level is increased by 1, and it broadcasts its own ini- 

tialization message over the resulting tree. 

Otherwise, v hooks itself on the other endpoint 

UJ of that edge. Observe that T became a sub-tree in 

a bigger tree, and v is the root of that sub-tree. If w 

has already received an initialization message which 

was broadcast by the root of the resulting tree, then 

this message is relayed by 21 over T, so that T will 

participate in the process of election of the best edge 

in the resulting tree. 

Until this happens, v iterates the Test-Distance 

procedure. The main property of Test-Distance is 
that if it srlcceeds, then the size of the resulting tree 

is bigger than Z1(‘l+‘, where I(v) is level of node v . In 

this case, the level of all the nodes in T, including v, 

is increased by 1, and Test-D&ance procedure is exe- 

cuted again. 

Upon each invocation of Test-Distance, node v 
sends a special ezploration token to its father w. The 
token carries a counter, which is initialized to 2’(‘1+‘. 

Upon arrival of a token at a certain node, that node 

subtracts the number of its sons from the counter. If 

counter is positive, and the receiving node is not a 

root node, then that node forwards the token (with 

decreased counter) to its father. Eventually, after 

moving along pointers to fathers, either the token 

reaches the root with positive counter, or the counter 

of the token becomes non-positive, before reaching 

the root. In the former case, token “dies” and the 

Test-Distance procedure fails; in the latter case an 

acknowledgement is sent back to v. Upon its arrival 

at o, node w broadcasts a special message over T, 

which causes every node in T to increase by its level 

by 1. Upon termination of this broadcast, Test- 

Distance procedure is declared to be a success, and it 

is restarted again. 

The process continues until eventually Test- 

Distance fails, i.e. the token of v reaches the root and 

dies. Clearly, at that time v is within distance of at 

most 2’(“1+’ from the root. Indeed, since every node 

which receives the token has degree at least 1, the 

token can travel for a length of at most ‘2’(‘)+’ 

towards the root. 
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Consider now the process of selection of the best 

edge in a tree of level m . The Root-Update procedure 

is activated either when initialization message has 

advanced for distance bigger than 2”‘+’ or if some 

node detected more than 2”‘+l internal edges while 

testing its edges in search for the local candidate. In 

either case, the process of selection of best edge is 

interrupted, the level of the root is increased by 1, 

new level is broadcast over the tree and new selection 

process is started. 

Theorem Wl: The MST stage eventually ter- 

minates. Upon its termination the father pointers 

form the MST of the network. 

Proof: Will be given in full paper. l 

3.3. Complexity of the MST stage 

3.3.1. Communication 

Theorem WZ: The communication complexity 

of the MST stage is O(E+VlogV). 

Proof: Given below. 

First Phase: The fact that number of message in 

the first phase is O(E+VlogV) follows from the 
analysis of [GHS-831. 

Second Phase: Compared to [GHS-831, the only 
additional messages are the messages sent by the 

Root-Update and the Test-Distance procedures. 

Clearly, operation of Root-Update can be charged to 

(nodqlevel) pairs with constant charge per pair. It 

only remains to account for the exploration messages 

(and acknowledgements) in the Test-Distance pro- 

cedure. 

Let the final exploration token of a sub-tree be 

the exploration token which reaches the root. The 

final exploration message is a transmission of the final 

exploration token. The total number of non-final 

exploration messages cannot exceed by more than a 

constant the total number of transmissions of final 

exploration messages. Indeed, each exploration token 

traverses path which is twice longer than that of its 

predecessor; the lengthes of those pathes form a 

geometrical progression, whose sum is dominated by 

its last term. It is thus sufficient to show that the 

number of final exploration messages is 0( Vlog V). 

Clearly, a node receives at most one final exploration 

message from each sub-tree at Phase 2. 

Consider now a directed tree, referred to as the 

merging tree, whose vertices are trees existing during 
Phase 2. The leaves of the merging tree are the initial 

trees of Phase 2. The parent of a vertex representing 



tree T is the vertex representing the tree .which 

resulted from merging T with some other trees. 

Observe now that if a network node i is traversecl by 

exploration tokens of a tree A, then it canno,! be 

traversed by tokens of any other tree C, which is an 

ancestor of A in the merging tree, since any ancestor 

C of A contains node i. 

Thus, the total number of final exploration 

messages received by a node is upper-bounded bsy the 

maximal cardinality of a sub-set of vertices in the 

merging tree, such that no vertex in the sub-set is 

ancestor of another. Clearly, the largest possible sub- 

set consists of all the the leaves in the merging tree, 

corresponding to initial trees of Phase 2. Since in the 
V 

second phase every tree has size -- at least, and 
log v 

initial trees of Phase 2 are node-disjoint, then the 

number of such trees is at most log V. This implies 

that a node can receive at most Iog‘V final exlplora- 

tion tokens, Thus, the total number of exploration 

messages is 0 ( Vlog V). This completles the Proof. l 

3.3.2. Time 

Theorem W3: The time complexity elf the 

MST stage is O(V). 

Proof: Given below. 

First Phase: Let 7 I be the length of of the inter- 

val of time in which level 1 is the lowest level in the 
network and S1 be the size of the biggest tree o:f level 

1. As observed in [G-85], .S’, 2 c *T I, where c is .a con- 

stant independent of I. Let o be the set of all I’ -with 
V 

s, <- 
log v 

and P be the set of all I -with S, 2-c. 
1ogv 

Observe that the time complexity of the first phase is 

For any two different levels in p, the biggest 

trees with those levels must be node-disjoint, since 
-. 
V 

after size of - 
log v 

is reached, the first phase i:s over 

for such tree. Thus, the time of the first phase is 

0 ( V), because 

Second Phase: Denote by Al the first time at 

which 1 is the lowest level in the network, and by Cl 

the first time after Al at which every node at distance 

less than 2-2’+’ from the root has level I+1 at least. 

Claim 1: CL--Al=O(2’+‘). 

Proof: .After time Al, consider a tree with level 

1. Since this level is the minimum level in the net- 

work, all test messages sent by nodes in that tree are 

answered immediately. It is easy to see that either 

the time required to complete the selection of the best 

edge is only 0(2’+‘) time, or level of the root is 

increased to l-+-l by the Root-Update. If the best 

edge is select,ed, &nd it is not the core edge, then the 

root ceases to be the root. If it is the core edge, then 

the root stays a root but its level is increased to 1 -j-l. 

In either case, by the time A1+0(2’+‘), all tree roots 

have level I-t-1 at least. 

It takes additional 0(2’+‘) time to propagate 

level increase from a root to all the nodes whose dis- 

tance from their roots does not exceed 2.2’+‘. l 

Claim ,?: Al+1-Cl=O(21+‘). 

Proof: Consider a node n in a sub-tree T of 

depth D, 2” ID <2d+‘, which has level s, s > d 

when it becomes a sub-tree. Let H be the distance of 

the root of 7‘ to the root r of the whole tree. 

If. s 2 I +l, then level of n is already 1 +l at 

least. If s <I+1 and H <2l+‘, then node n is within 

distance of .D+H <2”+2’+’ <2*2’+’ from r and its 

level is 1 +l at least by the time C, . 

It only remains to consider the case of s <I +l 

and H >2’*‘. Since s <l+l, T must become a sub- 

tree before time Cl. Afterwards, each Test-Distance 
Procedure of level q , s <q 5 1 +l, terminates success- 

fully in time 0(29+‘) after its invocation, raising the 

level of all the nodes in the tree T to q. The total 

time consumed by all those Test-Distance procedures 

is at most 

1+1 

c 0(29+‘) = 0(2’+‘). 
q=s+l 

Thus, by the time C1+0(2’+‘), all nodes have 

level l+l at least. 0 

Claims 1,2 imply that r l=Al+l- Al =0(2’+‘), 

i.e. the period of time in which 1 is the smallest level 

in the network is upper-bounded by O(2’). The time 

complexity of the second phase is upper-bounded by 

‘Er 1 <‘EO(2’) = O(2’Ogv)=O( V).o 
14 14 

4. Stage :L: Counting algorithm 

4.1. Outline 

The algorithm uses ideas of [GHS-831, [G-85] 

236 and [CT-851, b t u is substantially different from them. 



The main difference is that it does not insist of con- found. If no neighboring trees of the same level have 

strutting a minimum spanning tree of the network. It been found, then the algorithm is finished. Otherwise, 

does construct a spanning tree, but not necessarily minimum-weight link leading to another tree of the 

the one of minimum cost. It uses the idea of levels, same level is found, and the following Marriage Pro- 

introduced in [GHS-831, and attempts to adjust levels cedure merges together pairs of trees of the same level 

to the actual size of the tree, as suggested in \G-851 which have the same minimum-weight outgoing link. 

and [CT-851. However, the level adjustment technique If the Marriage procedure cannot match the tree to 

is much more subtle. Essentially, level is adjusted another tree, then the algorithm is terminated. 

according to height and degree of nodes in the tree, This loop is repeated by each tree which has not 
as well as total number of the nodes in the tree; this yet been conquered. It is not hard to see that all the 
gives a good estimate on the the time spent on pro- procedures executed by all the nodes were executed in 
cessing of that tree. Since we waived the requirement some serial order, then the algorithm above is correct. 
that the tree should be of minimum cost, trees will 

almost never wait to other trees. Now us proceed 4.2. Detailed description of the algorithm 
with a more detailed description. 

Upon the invocation of the algorithm and after 
The algorithm maintains in the network a 

forest of directed rooted trees, which span all the 
each level increase, Link-Search procedure is called. 

During the procedure, each node scans its incident 
nodes of the network. A link which enters the forest links, in the order of their weights, starting with the 
stays in the forest forever. Each tree is kept in a dis- link of the smallest weight, until it finds a link lead- 
tributed fashion, i.e. node only keeps pointers to its ing to another tree of bigger or equal level; such link 
father and its sons in the tree. The root of each tree is called jeasible link of that node at that level. 
is called leader of that tree. Initially, every node Links already known to be internal links in the tree 
forms a degenerate tree consisting of one node. Upon are not scanned any more. If while this scanning a 
the termination of the algorithm, there is only one node detects a link leading to a tree with smaller 
tree; its root is the leader of the network. level, then the bigger tree starts invasion of the 

Each tree has a level, which supposedly reflects smaller tree thru that link, while at the same time 
the size of the tree. The level of a tree containing a the node in the bigger tree continues search for the 
single node is 0. At any time level of a tree is a lower feasible link, attempting to find a link to another tree 
bound on the logarithm of the number of nodes in of bigger or equal level. 
the tree. In the course of the algorithm, trees are The procedure is interrupted whenever a node is 
expanding and clash with neighboring trees. In such detected such that the sum of its height in the tree 
clashs, bigger level trees are allowed to invade terri- and its degree in the tree exceeds 2kf1, where k is the 
tory of smaller-level trees, capturing their nodes. level of the tree. In this case Level-Update Procedure 
Captured nodes of the smaller-level tree inherit the is called, since, obviously, the tree contains much 
level of the bigger tree and the name of the leader of more nodes than ought to be in a tree of its level, and 
the bigger tree, updating their father-son pointers thus the level should be increased. The idea behind 
accordingly. A tree can be invaded at the same time this interrupt mechanism is that Link-Search is inter- 
by many bigger-level trees from different directions, rupted whenever the time it spends is too big. This 
each capturing another piece of its territory. time is measured implicitly by the communication 

Schematically, the algorithm performed by each depth of Link-Search which is bounded by the max- 

tree at each level can be be viewed as consecutive imum sum of node height and node degree in the tree, 

applications of 3 basic procedures, Link-Search, taken over nodes which participated in this pro- 

Level- Update and Marriage. Level- Update Procedure cedure. 

updates the level of the tree resulting from merging Level-Update Procedure attempts to update the 
tree, setting it to the logarithm of its cardinality. level of the tree to the (integer) value of the loga- 
Level-Update succeeds in its task, unless the tree in rithm of the number of nodes (cardinality) of the 
which it is running is being invaded at the same time tree. Level-Update procedure succeeds in case that the 
by some other tree. In case that it does succeed, tree is not being absorbed at that time by bigger-level 
Link-Search is called. In Link-Search Procedure, the tree and aborts otherwise. In the latter case, the level 
tree expands, conquering neighboring trees of smaller is not changed. The Level-Update procedure operates 
level until either a tree of the same or bigger level is similarly to “twephase commit” protocols. It first 
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attempts to fock the nodes of the tree; it succeeds to 

lock the nodes which have not been captured in the 

meantime by bigger trees. A locked node cannot be 

captured by other tree until the lock is released. If all 

the nodes of the tree have been locked, then the pro- 

cedure succeeds as a whole; then level of each node is 

set to the (integer) value of the logarithm of the car- 

dinality of the tree. Otherwise, the procedure aborts 

without changing a level of any node. In both cases, 

all the nodes are unlocked upon the termination of 

the procedure. In case that Level-Update aborts, the 

leader of this tree becomes inacta’ve, in the sense that 

it will not trigger execution of any additional pro- 

cedure in its tree. The reason for it is that it realizes 

that it will never become the network leader and its 

tree will be absorbed by bigger-level trees. Observe 

that upon termination of Level-Update, either the 

level is increased or the tree becomes inactive. 

Eventually, either there will be a non- 

interrupted execution of Link-Search, or the tree is 

invaded by another tree. In the latter case, the tree 

leader is killed. In the former case, it acts as follows. 

If none of the tree nodes found a feasible link:, then 

the tree must cover the entire network. In this case, 

the algorithm terminates, the tree is a final spanning 

tree, the root of the tree is declared to be the leader, 

its name is broadcasted over the tree to all the nodes, 

and the total number of nodes is counted. Otherwise, 

some feasible links have been found. If all feasible 

links lead to trees of the same level, then the pre- 

ferred link is elected as the feasible link: with 

minimum weight; the tree on the other side of this 

link is called the preferred tree. Otherwise, if there 

exists a feasible link leading to a tree with bigger 

level, then the tree becomes inactive. 

At this point, if the tree is active, then Mar- 

riage Procedure is called, which merges together pairs 

of trees of the same level, having the same preferred 

link. In such pair, the tree with bigger identity con- 

quers its mate with smaller identity, in spite of the 

fact that their levels are the same. 

4.3. Implementation details 

In the Link-Search Procedure, scanning of the 

edges is implemented by sending exploration messages 

along these edges. After each node of the tree linishs 

its search of the feasible link, it reports the result of 

the search to the root of the tree. A leaf nod.e sends 

the report whenever it finishes the search, whil.e inter- 

nal node does it only after receiving reports from all 

been referred to as convergecast in [A-85], (AG851. 

This report either contains the identity of the feasible 

link and the level of the tree on the other side or sim- 

ply says that no feasible link has been found, i.e. all 

incident links are internal links. The root node col- 

lects such reports from all nodes of its tree, including 

the nodes that have just been captured or are going 

to be captured. 

The locking mechanism, used in the Level- 

Update Procedure, is implemented in 2 phases; each 

phase involves one broadcast and one convergecast 

over the tree. In the first broadcast, nodes are 

informed that the locking algorithm has started; a 

node receiving the first broadcast becomes locked if it 

has not yet been invaded by another tree. A locked 

node cannot be invaded by another tree until it is 

unlocked; the arriving exploration messages are 

buffered and processed immediately after the node 

will be unlocked. In the following convergecast, the 

leader of the tree finds out whether all locks has been 

obtained. If this is the case, then the locking suc- 

ceeded; otherwise it fails. If the locking has been suc- 

cessful, then new level is computed. The following 

broadcast informs all the nodes whether the locking 

was successful. If locking was successful, then each 

node updates its level. In any case, it becomes 

unlocked and processes the exploration messages 

stored in its buffer while locking algorithm was run- 

ning. The following convergecast is needed only for 

purpose of synchronization, i.e. to ensure that all 

nodes have completed this procedure. 

4.4. Correctness 

Theorem Ul: The algorithm above eventually 

terminates, with father pointers forming a spanning 

tree in the network. 

Proof (Sketch): Obviously, if the algorithm ever 

terminates, then it terminates correctly. A node may 

declare itself to be the leader of the network only if it 

is the root of a tree which spans the entire network. 

Clearly, such a node must be unique and all other 

nodes will know the name of the leader, since leader 

broadcasts its name along the tree after declaring 

itself as the leader. It only remains to show that the 

algorithm does terminate. 

Since the trees can only gFOW, then, if the algo- 

rithm does not terminate, there must exist a “final” 

forest that consists of many trees, none of which will 

grow in the future. Consider among them the set S 

trees of the highest level. Link-Search procedures 
the sons. This well known communication pattern has 
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the highest level. Thus, every tree in S has a pre- 

ferred link, leading to another tree in S. These pre- 
ferred links are part of minimum weight spanning 
tree among all spanning tree which contain all the 

trees in 5’. Thus the trees in S together with pre- 

ferred links cannot contain a simple cycle. 

It follows that there exists a pair of trees in S 

whose preferred links lead to each other. Marriage 

procedure will merge such trees. This merging cannot 

be interrupted by higher-level trees since there are not 

any. This merging leads to a bigger tree with 

increased level, and contradicts the assumption that 

this is the final forest. 

Details of t,he proof will be given in the final 

paper. 0 

4.5. Complexity of the Counting Stage 

4.5.1. Communication complexity 

Theorem U2: The total number of messages is 

O(E+VlogzV). 

Proof: We need to prove the following 

Lemma: The maximum level is log,V. 

Proof: immediately follows from the fact that level is 

set to the logarithm base 2 of the number of nodes in 
the tree l 

Now, let us divide messages in two categories: 

exploration messages which are sent by nodes during 

the search for chosen link and con&01 messages which 

include all the rest. Consider an exploration message 

sent from a node i to a node j. Let Name(i) and 

Level(i) denote name and level of node i upon 

transmission of that message, and let Name(j) and 

Level(j) denote name and level of node j upon 

arrival of that message. If Name(i) = Name(j) then 

this is the last message to be sent over that link, and 

it will be charged to the link (i *j). Otherwise, the 

charging is as follows. 

If Level(i) >Level(j) then we charge the mes- 

sage to the pair (Level(i) , j]; each pair is charged 

only once because upon receipt of that message node 

j immediately increases its level to Level(i). 

If Level(i) 5 Level(j) then we charge the mes- 

sage to the pair [Level(i), k]; each pair is charged 

only once since this is the last exploration message 

sent by i at that level, i.e. level of i will increase 
before additional messages are sent. Since, the max- 

imum possible level is log,V, it follows that the total 

number of exploration messages is 0 (E + I/log, V). 

Now, we are going to prove that the total 

number of control messages is 0( Vlog2V), and thus 

the exploration messages dominate the communica- 

tion complexity of the whole algorithm. Control mes- 

sages include the messages sent by Link-Search, 
Level-Update and Marriage Procedures. It is easy to 

see that messages of these procedures are sent only 

along tree links, and each procedure involves constant 

number of messages per each tree link. It only 

remains to show that at certain level, each procedure 

is called at most once. This is obviously true for 

Link-Search, which is called by tree leader (only) at 

times when level of the tree increases. Marriage pro- 

cedure is also called once per level. Level-Update pro- 

cedure is called once after each Link-Search Procedure 

and once in Marriage Procedure, i.e. at most twice 

per level. Thus, each of the procedures is indeed 

called only constant number of times. l 

4.5.2. Time complexity 

Theorem U3: The time complexity of the 

algorithm is O(V). 

Proof: Let time tk be the last time that an active 

tree at level k exists in the network. A tree is defined 

to be active if its leader is active. We cla.im that 

tk = O(29. S’ mce the the biggest. level b that is 

achievable is 1og2V, this claim establishes the state- 

ment of the Theorem. To prove the claim, all we 

need to show that tl, - tl,-, 5 c .2k, since summing 

this inequality over all levels k yields 

tk <2c .2k = O(2k). 

Since the time it is created, a tree at level k 

executes, first, Link-Search Procedure, then Marriage 

Procedure and, finally, Level-Update Procedure. In 

case that Link-Search was not interrupted, Marriage 

Procedure is executed. Then, Level-Update Procedure 

is performed. Upon its completion, either tree 

becomes inactive or its level is increased to k+l. 

Claim US: Each one of the procedures above 

takes at most O(2”) time, if we we ignore the time 

spent in Link-Search Procedure, that is caused by 

waiting to nodes of lower level to become unlocked. 

It is easy to see that the Claim implies that 

tk - tkml = O(2”). Indeed, by time tkml, all processes 

of level k have already been created and all nodes, 

locked by Level-Update procedures of processes of lev- 

els less than k are already unlocked. Thus, after &-1, 
Link-Search procedures called by level k processes 
never wait until lower-level trees unlock their terri- 

tory while invading it. According to the claim, all the 
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ignored, proving the Claim. 

To see that the Claim is true, observe that in 

the Link-Search messages never reach a node with 

height bigger than O(2”) and no node scans ‘more 

than O(Z’) incident edges. Thus, t.hen execution of 

this procedure (after &) takes O(12k) time. IMar- 

riage procedure involves sending proposal to preferred 

tree of the same level, getting a reply. If there is no 

engagement, i.e. a tree makes a proposal and this pro- 

posal is turned down, then the tree becomes in.sctive. 

In case that proposal is accepted, the tree with bigger 

leader identity absorbs its preferred tree. Level- 

Update involves propagating a message over the 

resulting tree and getting acknowledgements back for 

constant number of times. All these actions take 

time proportional to the height of the trees involved. 

These heights cannot exceed O(2k) because of the 

interruption rule. Thus, overall, every one of the pro- 

cedures above takes O(2”) time after tk-1. l 
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