Compact Routing Schemes for Dynamic Ring Networks

Seminar in Distributed Computing WS 05/06

Jonas Rutishauser

Overview

- Introduction
- Overview
- Scheme with Adaption Cost Zero
- Scheme with Linear Adaption Cost
- Scheme With Constant Expected Adaption Cost
- Conclusion

Introduction

- Settings
 - asynchronous dynamically changing ring of processors
 - fault free
- Static techniques
 - significant recomputing on change
- Known dynamic techniques
 - inefficient schemes

==> Dynamic Interval Routing

Overview

- Introduction
- Overview
- Scheme with Adaption Cost Zero
- Scheme with Linear Adaption Cost
- Scheme With Constant Expected Adaption Cost
- Conclusion

k-Interval Routing Schemes (k-IRS)

- N-Node Network
 - Nodes labeled from 0 to N-1
 - every arc leaving Node i has k disjoint intervals assigned
 - message from i to j forwarded through arc containing j
 - Space required per Node:
 O(k*d*log(N))
 d: degree of Node

Dynamic Interval Routing (DIR)

- Nodes labeled from 0 to N-1
- based on the 1-IRS
- not all always on-line
- update procedure on change
 - after going on-line
 - before going off-line

Definitions

- *pending*: processor coming on-line or going off-line but not completed update procedure
- *non-/active*: completed update procedure
- quiescence: all processors are either active or non-active

- Correct:
 - Message travels only a bounded number of steps
 - receiver receives the message if he was active during the entire lifetime of the message

closed switches have cost 1 others 0

Overview

- Introduction
- Overview
- Scheme with Adaption Cost Zero
- Scheme with Linear Adaption Cost
- Scheme With Constant Expected Adaption Cost
- Conclusion

Scheme with Adaption Cost Zero

- divide ring in two halves
- no message when going on-/off-line
- stretch factor: min{ n-1 , [N/2]}
- Intervals:
 - $l_i = [i+1 \mod N, i+N/2 \mod N]$
 - $-r_i = [i+1+N/2 \mod N, i-1 \mod N]$
- Message: M=(D,r,s,x)
 - D: information
 - r: receiver

- s: source
- x: times passed 0

Scheme with Adaption Cost Zero

- Properties:
 - space at most O(logN) per Node
 - N, label, two intervals of O(logN) bits
 - adaption cost zero
 - trivial
 - stretch factor at most min{ n-1 ,[N/2]}
 - travels always in the same direction
 - at most N/2 active processors
 - can be at most n-1

Overview

- Introduction
- Overview
- Scheme with Adaption Cost Zero
- Scheme with Linear Adaption Cost
- Scheme With Constant Expected Adaption Cost
- Conclusion

Scheme with Linear Adaption Cost

- dynamically update intervals
- interval delimited by active opposite processor
- update procedure when going on-/off-line
 - 3 phases
 - phase 1 for sequentializing
 - phase 2/3 for updating values of all processors
- store
 - left label, left opposite, label, opposite, old opposite, even, right label, right opposite

Sequentializing

- messages from higher label can pass
- messages from higher phase can pass
- buffering other messages

only one processor can pass to phase 2 at a time

Update Procedure

- Send phase 1 message to left
 - collect left and right neighbors values
 - do sequentializing
- getting message back => "won"
 - calculate own values
- start phase 2 and then phase 3
 - propagate the new values the other processors
 - one phase for each direction

Proof (1)

- Lemma
 - at most one processor enters phase 2 at a time
- Proof by contradiction
 - Assume x!=y and both enters phase 2
 - Assume x<y</p>
 - x passed before y got up
 - phase 1 message of x before message of y
 - x gets into phase 2
 - phase 1 message of y can't pass x

Proof (2)

- Lemma
 - all pending processors enter phase 2
- Proof
 - Blocked by other in phase 2/3
 - will continue after other finishes
 - Blocked by higher labeled processor
 - highest will enter phase 2
 - number of higher labeled processors decreases
 - => number of pending processors decreases

Scheme with Linear Adaption Cost

- Properties:
 - stretch factor: 1
 - use opposite for intervals
 - space: O(log*N*) bits per Node
 - constant number of values of O(logN) bits
 - adaption cost per pending processor:
 O(n) messages of O(logN) bits
 - 3*n messages (n messages for each phase)
 - constant number of values in messages of O(logN) bits

Overview

- Introduction
- Overview
- Scheme with Adaption Cost Zero
- Scheme with Linear Adaption Cost
- Scheme With Constant Expected Adaption Cost
- Conclusion

Scheme with Constant Expected Adaption Cost

- Randomized DIR
- expected stretch factor: 1+1/k, $k \ge 3$
- intervals delimited using estimation of opposite
- update opposite with probability such that:
 - expected adaptation cost: O(k)
 - expected stretch factor: <1+1/k
- update procedure when going on-/off-line

Properties

- Store per processor:
 - own label
 - opposite value
- update uses 3 phases
 - phase 1 to get number of on-line processors
 - phase 2 to get (equally spaced) subset of labels
 - phase 3 to let every processor update their values

Update Procedure (1)

- send request (A message) to left processor
 - label, number of on-line processors and opposite
 - if receiving a phase 1 message count as active
 - values will be set later in phase 2/3 and get active
- get values from left processor (R message) or phase 3 message
- flip coin if should start an update
 - probability of update: min{1,10k/ñ}

(ñ number of active processors got previously)

- shouldn't update => active

Update procedure (2)

- send phase 1 message
 - content
 - counter n_0 of active processors
 - counter n_1 of pending processors
 - own label
 - use sequentializing from previous algorithm
 - not winning processors will update with the phases 2/3 of the winning processor and get active afterwards
- get phase 1 message back

 $- n = n_0 + n_1$

Update procedure (3)

- send phase 2 message
 - collect label of every n/10k -th processor
 => stores n*(10k/n) ≤ 20k labels
- get phase 2 message back
 - calculate opposite using labels of phase 2 message

Update procedure (4)

- send phase 3 message
 - content
 - labels of phase 2 message
 - n
 - update active and pending processors opposite and n value
- get phase 3 message back
 - become active

Proof

Lemma

- every pending processor will go on-/off-line after some time
- Proof
 - 4 cases after sending first message to left
 - a) receive message back from left, flip coin and get tail
 - become active
 - b) receive message back, flip coin and get head
 - enter phase 1 and rest similar to previous algorithm
 - c) receives phase 1 message
 - will participate update and get active afterwards
 - d) receives phase 2/3 message
 - wait until end of update and than flip coin => a) or b)

Properties (1)

- expected amortized number of messages: O(k) of O(k*logN) bits
 - message size
 - max O(k) values of size O(logN)
 - number of messages:
 - A pending processor is responsible for at most
 - one A message and 1 R message
 - A processor sends per update at most
 - two phase 1 message
 - its own (got R) or from other (got phase 1)
 - winners message
 - one phase 2/3 message

Properties (2)

- update phases have probability min{1,10k/n}
- let n' = changes since last update
- update is responsible for 3(n+n') messages => cost $\leq 6 + min\{1, \frac{10k}{n}\} \cdot 3 \frac{(n+n')}{1+n'} = O(k)$

Properties (3)

- space: at most O(log*N*) bits per node
 - constant number of values of size O(logN)
- expected stretch factor: 1+1/k
 - consider at quiescent state
 - last update done by processor i
 - $n_0 =$ active processors counted by i
 - $n_1 =$ pending processors counted by i
 - $-n_2^2$ = change of size in the ring since last update

Proof (1)

- each processor in n₂ flips coin with head probability of min{1, 10k/(n₀+n₁)}
- expected value of $n_2 \le (n_0 + n_1)/10k$
- let $v = (n_0 + n_1)$, D = v/(10k)
- at most $\lambda = v/D$ labels are collected in phase 2
- collected labels are: $V = \{v_0, v_1, \dots, v_{\lambda-1}\}$
- let v_{j} in V be first processor after x or x self
- $op(x) = V_{(j+\lambda/2) \mod \lambda}$

Proof (2)

• minimum distance between x and op(x):

 $- 1+(\lambda/2-1)D ≥ 1+(\lambda/2-3/2)D ≥ 1+(v/(2D)-3/2)D$

- in worst case the distance decreases by n₂
- => stretch factor bounded to: $\frac{v - (1 + (v/(2D) - 3/2)D)}{1 + (v/(2D) - 3/2)D - v/(10k)} \leq \frac{v/2 + 3D/2}{v/2 - 3D/2 - v/(10k)} \leq \frac{10k + 3}{10k - 5}$
- => stretch factor bounded by 1+1/k for $k \ge 3$

Overview

- Introduction
- Overview
- Scheme with Adaption Cost Zero
- Scheme with Linear Adaption Cost
- Scheme With Constant Expected Adaption Cost
- Conclusion

Conclusion

- works also with rings of ring networks
- randomized algorithm isn't tested in practice
- must know N before
- every Node has his fixed place in the ring

- interval-routing seems only be useful for
 - special topologies like rings and trees
 - or if space is expensive
- the intervals are calculated using a tree in other topologies

Questions?