## Compact Routing Schemes for Dynamic Ring Networks

## Seminar in Distributed Computing WS 05/06

Jonas Rutishauser

## Overview

- Introduction
- Overview
- Scheme with Adaption Cost Zero
- Scheme with Linear Adaption Cost
- Scheme With Constant Expected Adaption Cost
- Conclusion


## Introduction

- Settings
- asynchronous dynamically changing ring of processors
- fault free
- Static techniques
- significant recomputing on change
- Known dynamic techniques
- inefficient schemes
==> Dynamic Interval Routing


## Overview

- Introduction
- Overview
- Scheme with Adaption Cost Zero
- Scheme with Linear Adaption Cost
- Scheme With Constant Expected Adaption Cost
- Conclusion


## k-Interval Routing Schemes (k-IRS)

- N-Node Network
- Nodes labeled from 0 to N -1
- every arc leaving Node i has k disjoint intervals assigned
- message from i to j forwarded through arc containing $j$
- Space required per Node: O(k*d*log(N))
d: degree of Node

- $[0,2)$
- $[2,4)$
- $[4,6)$
$=\left[\begin{array}{l}{[6,7),[9,11)} \\ {[8,9),[11,0)}\end{array}\right.$


## Dynamic Interval Routing (DIR)

- Nodes labeled from 0 to $\mathrm{N}-1$
- based on the 1-IRS
- not all always on-line
- update procedure on change
- after going on-line
- before going off-line


## Definitions

- pending: processor coming on-line or going off-line but not completed update procedure
- non-/active: completed update procedure
- quiescence: all processors are either active or non-active
- Correct:
- Message travels only a bounded number of steps
- receiver receives the message if he was active during the entire lifetime of the message


## System

- bidirectional ring of N processors
- FIFO-Queues
- global Orientation
- N Switches
- 0 always active
- n : number of active and pending processors



## Overview

- Introduction
- Overview
- Scheme with Adaption Cost Zero
- Scheme with Linear Adaption Cost
- Scheme With Constant Expected Adaption Cost
- Conclusion


## Scheme with Adaption Cost Zero

- divide ring in two halves
- no message when going on-/off-line
- stretch factor: $\min \{n-1,\lfloor N / 2\rfloor\}$
- Intervals:

$$
\begin{aligned}
& -\underline{l_{i}}=[i+1 \bmod N, i+N / 2 \bmod N] \\
& -\underline{r_{i}}=[i+1+N / 2 \bmod N, i-1 \bmod N]
\end{aligned}
$$

- Message: $M=(D, r, s, x)$
- D: information
- r: receiver

s : source
x: times passed 0


## Scheme with Adaption Cost Zero

- Properties:
- space at most O(logN) per Node
- $N$, label, two intervals of $\mathrm{O}(\log N)$ bits
- adaption cost zero
- trivial
- stretch factor at most $\min \{n-1,[\mathrm{~N} / 2]\}$
- travels always in the same direction
- at most N/2 active processors
- can be at most n-1


## Overview

- Introduction
- Overview
- Scheme with Adaption Cost Zero
- Scheme with Linear Adaption Cost
- Scheme With Constant Expected Adaption Cost
- Conclusion


## Scheme with Linear Adaption Cost

- dynamically update intervals
- interval delimited by active opposite processor
- update procedure when going on-/off-line
- 3 phases
- phase 1 for sequentializing
- phase 2/3 for updating values of all processors
- store
- left label, left opposite, label, opposite, old opposite, even, right label, right opposite


## Sequentializing

- messages from higher label can pass
- messages from higher phase can pass
- buffering other messages
- only one processor can pass to phase 2 at a time


## Update Procedure

- Send phase 1 message to left
- collect left and right neighbors values
- do sequentializing
- getting message back => „won"
- calculate own values
- start phase 2 and then phase 3
- propagate the new values the other processors
- one phase for each direction


## Proof (1)

- Lemma
- at most one processor enters phase 2 at a time
- Proof by contradiction
- Assume x!=y and both enters phase 2
- Assume x<y
- x passed before y got up
- phase 1 message of $x$ before message of $y$
- x gets into phase 2
- phase 1 message of $y$ can't pass $x$


## Proof (2)

- Lemma
- all pending processors enter phase 2
- Proof
- Blocked by other in phase 2/3
- will continue after other finishes
- Blocked by higher labeled processor
- highest will enter phase 2
- number of higher labeled processors decreases
- => number of pending processors decreases


## Scheme with Linear Adaption Cost

- Properties:
- stretch factor: 1
- use opposite for intervals
- space: $\mathrm{O}(\log N)$ bits per Node
- constant number of values of $\mathrm{O}(\operatorname{logN})$ bits
- adaption cost per pending processor:
$\mathrm{O}(\mathrm{n})$ messages of $\mathrm{O}(\log N)$ bits
- 3*n messages (n messages for each phase)
- constant number of values in messages of $\mathrm{O}(\log \mathrm{N})$ bits


## Overview

- Introduction
- Overview
- Scheme with Adaption Cost Zero
- Scheme with Linear Adaption Cost
- Scheme With Constant Expected Adaption Cost
- Conclusion


## Scheme with Constant Expected Adaption Cost

- Randomized DIR
- expected stretch factor: $1+1 / k, k \geq 3$
- intervals delimited using estimation of opposite
- update opposite with probability such that:
- expected adaptation cost: $\mathrm{O}(\mathrm{k})$
- expected stretch factor: <1+1/k
- update procedure when going on-/off-line


## Properties

- Store per processor:
- own label
- opposite value
- update uses 3 phases
- phase 1 to get number of on-line processors
- phase 2 to get (equally spaced) subset of labels
- phase 3 to let every processor update their values


## Update Procedure (1)

- send request (A message) to left processor
- label, number of on-line processors and opposite
- if receiving a phase 1 message count as active
- values will be set later in phase $2 / 3$ and get active
- get values from left processor (R message) or phase 3 message
- flip coin if should start an update
- probability of update: $\min \{1,10 \mathrm{k} / \tilde{n}\}$
(ñ number of active processors got previously)
- shouldn't update => active


## Update procedure (2)

- send phase 1 message
- content
- counter $n_{0}$ of active processors
- counter $\mathrm{n}_{1}$ of pending processors
- own label
- use sequentializing from previous algorithm
- not winning processors will update with the phases $2 / 3$ of the winning processor and get active afterwards
- get phase 1 message back
$-\mathrm{n}=\mathrm{n}_{0}+\mathrm{n}_{1}$


## Update procedure (3)

- send phase 2 message
- collect label of every n/10k -th processor $=>$ stores $\mathrm{n}^{*}(10 \mathrm{k} / \mathrm{n}) \leq 20 \mathrm{k}$ labels
- get phase 2 message back
- calculate opposite using labels of phase 2 message


## Update procedure (4)

- send phase 3 message
- content
- labels of phase 2 message
- n
- update active and pending processors opposite and $n$ value
- get phase 3 message back
- become active


## Proof

- Lemma
- every pending processor will go on-/off-line after some time
- Proof
- 4 cases after sending first message to left
a) receive message back from left, flip coin and get tail
- become active
b) receive message back, flip coin and get head
- enter phase 1 and rest similar to previous algorithm
c) receives phase 1 message
- will participate update and get active afterwards
d) receives phase $2 / 3$ message
- wait until end of update and than flip coin => a) or b)


## Properties (1)

- expected amortized number of messages: $\mathrm{O}(\mathrm{k})$ of $O\left(k^{*} \log N\right)$ bits
- message size
- max $\mathrm{O}(\mathrm{k})$ values of size $\mathrm{O}(\operatorname{logN})$
- number of messages:
- A pending processor is responsible for at most
- one A message and 1 R message
- A processor sends per update at most
- two phase 1 message
- its own (got R) or from other (got phase 1)
- winners message
- one phase 2/3 message


## Properties (2)

- update phases have probability $\min \{1,10 \mathrm{k} / \mathrm{n}\}$
- let $\mathrm{n}^{\prime}=$ changes since last update
- update is responsible for $3(\mathrm{n}+\mathrm{n}$ ') messages
$\Rightarrow$ cost $\leq 6+\min \left\{1, \frac{10 \mathrm{k}}{n}\right\} \cdot 3 \frac{\left(n+n^{\prime}\right)}{1+n^{\prime}}=O(k)$


## Properties (3)

- space: at most $O(\log N)$ bits per node
- constant number of values of size $\mathrm{O}(\log \mathrm{N})$
- expected stretch factor: $1+1 / \mathrm{k}$
- consider at quiescent state
- last update done by processor i
- $\mathrm{n}_{0}=$ active processors counted by i
- $\mathrm{n}_{1}=$ pending processors counted by i
$-\mathrm{n}_{2}=$ change of size in the ring since last update


## Proof (1)

- each processor in $n_{2}$ flips coin with head probability of $\min \left\{1,10 k /\left(\mathrm{n}_{0}+\mathrm{n}_{1}\right)\right\}$
- expected value of $n_{2} \leq\left(n_{0}+n_{1}\right) / 10 k$
- let $v=\left(n_{0}+n_{1}\right), D=v /(10 k)$
- at most $\lambda=\mathrm{v} / \mathrm{D}$ labels are collected in phase 2
- collected labels are: $\mathrm{V}=\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\lambda-1}\right\}$
- let $v_{j}$ in $V$ be first processor after $x$ or $x$ self
- $o p(x)=v_{(j+\lambda / 2) \bmod \lambda}$


## Proof (2)

- minimum distance between $x$ and $o p(x)$ :

$$
-1+(\lambda / 2-1) D \geq 1+(\lambda / 2-3 / 2) D \geq 1+(v /(2 D)-3 / 2) D
$$

- in worst case the distance decreases by $\mathrm{n}_{2}$
- => stretch factor bounded to:

$$
\frac{v-(1+(v /(2 \mathrm{D})-3 / 2) D)}{1+(v /(2 \mathrm{D})-3 / 2) D-v /(10 \mathrm{k})} \leqslant \frac{v / 2+3 \mathrm{D} / 2}{v / 2-3 \mathrm{D} / 2-v /(10 \mathrm{k})} \leqslant \frac{10 \mathrm{k}+3}{10 \mathrm{k}-5}
$$

- => stretch factor bounded by $1+1 / k$ for $k \geq 3$


## Overview

- Introduction
- Overview
- Scheme with Adaption Cost Zero
- Scheme with Linear Adaption Cost
- Scheme With Constant Expected Adaption Cost
- Conclusion


## Conclusion

- works also with rings of ring networks
- randomized algorithm isn't tested in practice
- must know N before
- every Node has his fixed place in the ring
- interval-routing seems only be useful for
- special topologies like rings and trees
- or if space is expensive
- the intervals are calculated using a tree in other topologies


## Questions?

