

Compact Routing Schemes for
Dynamic Ring Networks

Seminar in Distributed Computing WS 05/06

Jonas Rutishauser

Overview

● Introduction
● Overview
● Scheme with Adaption Cost Zero
● Scheme with Linear Adaption Cost
● Scheme With Constant Expected Adaption Cost
● Conclusion

Introduction

● Settings
– asynchronous dynamically changing ring of

processors

– fault free

● Static techniques
– significant recomputing on change

● Known dynamic techniques
– inefficient schemes

==> Dynamic Interval Routing

Overview

● Introduction
● Overview
● Scheme with Adaption Cost Zero
● Scheme with Linear Adaption Cost
● Scheme With Constant Expected Adaption Cost
● Conclusion

k-Interval Routing Schemes (k-IRS)

● N-Node Network
– Nodes labeled from 0 to N-1

– every arc leaving Node i has k
disjoint intervals assigned

– message from i to j forwarded
through arc containing j

– Space required per Node:
O(k*d*log(N))
d: degree of Node

7

0

2

3

4

5

6

8
9

10
12

11

[0,2)
[2,4)
[4,6)
[6,7),[9,11)
[8,9),[11,0)

1

Dynamic Interval Routing (DIR)

● Nodes labeled from 0 to N-1
● based on the 1-IRS
● not all always on-line
● update procedure on change

– after going on-line

– before going off-line

Definitions

● pending: processor coming on-line or going
off-line but not completed update procedure

● non-/active: completed update procedure
● quiescence: all processors are either active or

non-active

● Correct:
– Message travels only a bounded number of steps

– receiver receives the message if he was active
during the entire lifetime of the message

System

● bidirectional ring of
N processors

● FIFO-Queues
● global Orientation
● N Switches
● 0 always active
● n: number of active

and pending processors
● closed switches have cost 1 others 0

0

1

2

3

4

5

6

7

Overview

● Introduction
● Overview
● Scheme with Adaption Cost Zero
● Scheme with Linear Adaption Cost
● Scheme With Constant Expected Adaption Cost
● Conclusion

Scheme with Adaption Cost Zero

● divide ring in two halves
● no message when going on-/off-line
● stretch factor: min{ n-1 , N/2 }
● Intervals:

– _

– _

● Message: M=(D,r,s,x)
– D: information s: source

– r: receiver x: times passed 0

l i=[i1mod N ,iN /2mod N]

r i=[i1N /2mod N ,i−1mod N]

Scheme with Adaption Cost Zero

● Properties:
– space at most O(logN) per Node

● N, label, two intervals of O(logN) bits

– adaption cost zero
● trivial

– stretch factor at most min{ n-1 , N/2 }
● travels always in the same direction
● at most N/2 active processors
● can be at most n-1

Overview

● Introduction
● Overview
● Scheme with Adaption Cost Zero
● Scheme with Linear Adaption Cost
● Scheme With Constant Expected Adaption Cost
● Conclusion

Scheme with Linear Adaption Cost

● dynamically update intervals
● interval delimited by active opposite processor
● update procedure when going on-/off-line

– 3 phases

– phase 1 for sequentializing

– phase 2/3 for updating values of all processors

● store
– left label, left opposite, label, opposite, old opposite,

even, right label, right opposite

Sequentializing

● messages from higher label can pass
● messages from higher phase can pass
● buffering other messages

● only one processor can pass to phase 2 at a
time

Update Procedure

● Send phase 1 message to left
– collect left and right neighbors values

– do sequentializing

● getting message back => „won“
– calculate own values

● start phase 2 and then phase 3
– propagate the new values the other processors

– one phase for each direction

Proof (1)

● Lemma
– at most one processor enters phase 2 at a time

● Proof by contradiction
– Assume x!=y and both enters phase 2

– Assume x<y

– x passed before y got up

– phase 1 message of x before message of y

– x gets into phase 2

– phase 1 message of y can't pass x

Proof (2)

● Lemma
– all pending processors enter phase 2

● Proof
– Blocked by other in phase 2/3

● will continue after other finishes

– Blocked by higher labeled processor
● highest will enter phase 2

– number of higher labeled processors decreases

– => number of pending processors decreases

Scheme with Linear Adaption Cost

● Properties:
– stretch factor: 1

● use opposite for intervals

– space: O(logN) bits per Node
● constant number of values of O(logN) bits

– adaption cost per pending processor:
O(n) messages of O(logN) bits

● 3*n messages (n messages for each phase)
● constant number of values in messages of O(logN) bits

Overview

● Introduction
● Overview
● Scheme with Adaption Cost Zero
● Scheme with Linear Adaption Cost
● Scheme With Constant Expected Adaption Cost
● Conclusion

Scheme with Constant Expected
Adaption Cost

● Randomized DIR
● expected stretch factor: 1+1/k, k≥3
● intervals delimited using estimation of opposite
● update opposite with probability such that:

– expected adaptation cost: O(k)

– expected stretch factor: <1+1/k

● update procedure when going on-/off-line

Properties

● Store per processor:
– own label

– opposite value

● update uses 3 phases
– phase 1 to get number of on-line processors

– phase 2 to get (equally spaced) subset of labels

– phase 3 to let every processor update their values

Update Procedure (1)

● send request (A message) to left processor
– label, number of on-line processors and opposite

– if receiving a phase 1 message count as active
● values will be set later in phase 2/3 and get active

● get values from left processor (R message) or
phase 3 message

● flip coin if should start an update
– probability of update: min{1,10k/ñ}

(ñ number of active processors got previously)

– shouldn't update => active

Update procedure (2)

● send phase 1 message
– content

● counter n
0
 of active processors

● counter n
1
 of pending processors

● own label

– use sequentializing from previous algorithm
● not winning processors will update with the phases 2/3 of

the winning processor and get active afterwards

● get phase 1 message back

– n = n
0
+n

1

Update procedure (3)

● send phase 2 message
– collect label of every n/10k -th processor

=> stores n*(10k/n) ≤ 20k labels

● get phase 2 message back
– calculate opposite using labels of phase 2 message

Update procedure (4)

● send phase 3 message
– content

● labels of phase 2 message
● n

– update active and pending processors
opposite and n value

● get phase 3 message back
– become active

Proof
● Lemma

– every pending processor will go on-/off-line after
some time

● Proof
– 4 cases after sending first message to left

a) receive message back from left, flip coin and get tail
– become active

b) receive message back, flip coin and get head
– enter phase 1 and rest similar to previous algorithm

c) receives phase 1 message
– will participate update and get active afterwards

d) receives phase 2/3 message
– wait until end of update and than flip coin => a) or b)

Properties (1)

● expected amortized number of messages: O(k)
of O(k*logN) bits
– message size

● max O(k) values of size O(logN)

– number of messages:
● A pending processor is responsible for at most

– one A message and 1 R message
● A processor sends per update at most

– two phase 1 message
● its own (got R) or from other (got phase 1)
● winners message

– one phase 2/3 message

Properties (2)

● update phases have probability min{1,10k/n}
● let n' = changes since last update
● update is responsible for 3(n+n') messages

=> cost ≤ 6min {1 , 10k
n

}⋅3
nn '
1n '

=O k

Properties (3)

● space: at most O(logN) bits per node
– constant number of values of size O(logN)

● expected stretch factor: 1+1/k
– consider at quiescent state

– last update done by processor i

– n
0
= active processors counted by i

– n
1
= pending processors counted by i

– n
2
= change of size in the ring since last update

Proof (1)

● each processor in n
2
flips coin with head

probability of min{1, 10k/(n
0
+n

1
)}

● expected value of n
2
≤ (n

0
+n

1
)/10k

● let v = (n
0
+n

1
), D=v/(10k)

● at most λ=v/D labels are collected in phase 2

● collected labels are: V={v
0
,v

1
,...,v

λ-1
}

● let v
j
 in V be first processor after x or x self

● op(x) = v
(j+λ/2)modλ

Proof (2)

● minimum distance between x and op(x):
– 1+(λ/2-1)D≥1+(λ/2-3/2)D≥1+(v/(2D)-3/2)D

● in worst case the distance decreases by n
2

● => stretch factor bounded to:

● => stretch factor bounded by 1+1/k for k≥3

v−1v /2D−3/2D
1v /2D −3 /2D−v /10k

 v /23D /2
v /2−3D /2−v /10k

10k3
10k−5

Overview

● Introduction
● Overview
● Scheme with Adaption Cost Zero
● Scheme with Linear Adaption Cost
● Scheme With Constant Expected Adaption Cost
● Conclusion

Conclusion
● works also with rings of ring networks
● randomized algorithm isn't tested in practice
● must know N before
● every Node has his fixed place in the ring

● interval-routing seems only be useful for
– special topologies like rings and trees

– or if space is expensive

● the intervals are calculated using a tree in other
topologies

●

– mathematical proof exists
● use last update and difference since then
● use maximal failure in opposite estimation

Questions?

