Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Discrete Event Systems Exercise 8: Sample Solution

1 Night Watch

a) Observe that in the steady state, in does not matter in which corner Stefan and Thomas are: the four states are equivalent. Moreover, the same symmetry argument applies for rooms at the border and for rooms in the middle. Thus, we can analyze the following simplified Markov chain:

Hence, in the steady state, it holds that

$$
P_{c}=1 / 3 \cdot P_{b} ; \quad P_{b}=1 / 3 \cdot P_{b}+1 / 2 \cdot P_{m}+P_{c} ; \quad 1=P_{c}+P_{b}+P_{m}
$$

Solving this equation system gives: $P_{c}=1 / 6$. The probability of being in a specific corner is therefore $1 / 6 \cdot 1 / 4=1 / 24$.
b) Since the two walks are independent, we have

$$
1 / 24+1 / 24-(1 / 24)^{2}=0.082
$$

2 Probability of Arrival

The proof is similar to the one about the transition time $h_{i j}$ (see script). We express $f_{i j}$ as a condition probability that depends on the result of the first step in the Markov chain. Recall that the random variable $T_{i j}$ is the hitting time, that is, the number of steps from i to j. We get $\operatorname{Pr}\left[T_{i j}<\infty \mid X_{1}=k\right]=\operatorname{Pr}\left[T_{i j}<\infty\right]$ for $k \neq j$ and $\operatorname{Pr}\left[T_{i j}<\infty \mid X_{1}=j\right]=1$. We can therefore write $f_{i j}$ as

$$
\begin{aligned}
f_{i j} & =\operatorname{Pr}\left[T_{i j}<\infty\right]=\sum_{k \in S} \operatorname{Pr}\left[T_{i j}<\infty \mid X_{1}=k\right] \cdot p_{i k} \\
& =p_{i j} \cdot \operatorname{Pr}\left[T_{i j}<\infty \mid X_{1}=j\right]+\sum_{k \neq j} \operatorname{Pr}\left[T_{i j}<\infty \mid X_{1}=k\right] \cdot p_{i k} \\
& =p_{i j}+\sum_{k \neq j} p_{i k} f_{k j} .
\end{aligned}
$$

