
WS 2005/06 Prof. R. Wattenhofer / Thomas Moscibroda / Stefan Schmid

Discrete Event Systems

Exercise 6: Sample Solution

1 Chomsky Normal Form

There are two ways of solving this problem. One way is to systematically follow the procedure
on page 99 of the textbook. The other one is to design a chomsky normal form from scratch that
generates the same language. In the following, we will present both solutions. For the systematic
approach, we begin by introducing a new start symbol S0 that leads to the former start symbol
A.

S0 → A

A → BAB | B | ε
B → 00 | ε

Next, we replace all ε-rules except for the new start state. As a result, we obtain the following
context free grammar:

S0 → A | ε
A → BAB | B | AB | BA | A | BB

B → 00

In the next step, we remove all unit rules of the form A → A, S → A, A → B, and so forth. This
procedure leads to the following CFG:

S0 → BAB | 00 | AB | BA | BB | ε
A → BAB | 00 | AB | BA | BB

B → 00

Next, we have to replace all rules having three or more variables on the right side. In our case,
we have to get rid of the rules S0 → BAB and A → BAB.

S0 → BA1 | 00 | AB | BA | BB | ε
A → BA1 | 00 | AB | BA | BB

A1 → AB

B → 00

Finally, we introduce a variable C that maps to a single terminal symbol 0 as follows.

S0 → BA1 | CC | AB | BA | BB | ε
A → BA1 | CC | AB | BA | BB

A1 → AB

B → CC

C → 0.

The grammar given in the exercise produces all strings with an even number (possibly zero) of
0s. Therefore, another way of solving the exercise is to design a context free grammar in chomsky
normal form generating the same language. For instance, the following (much simpler) grammar
does the job.

S0 → AA | BB | ε
B → AA | BB

A → 0.

2 CFL Closure Properties

Given two CFLs L and L′, L,L′ ⊆ A∗, consider any grammars G and G′ that generate L and
L′, respectively. The idea is to combine G and G′ appropriately in order to obtain grammars
for L ∪ L′, LL′, and L∗. Consider the union of L and L′, L ∪ L′, and let G = (V, A, P, S) and
G′ = (V ′, A′, P ′, S′). The following grammar generates L ∪ L′:

G(L ∪ L′) = (V ∪ V ′ ∪ {S0}, A ∪A′, P ∪ P ′ ∪ {S0 → S|S′}, S0). (1)

The concatenation can be proven as follows:

G(LL′) = (V ∪ V ′ ∪ {S0}, A ∪A′, P ∪ P ′ ∪ {S0 → SS′}, S0). (2)

Finally, for the Kleene star, let G = (V,A, P, S), we obtain G(L∗) as follows:

G(L∗) = (V ∪ {S0}, A, P ∪ {S0 → S0S0|S, S0 → ε}, S0). (3)

3 Context Sensitive Languages

a) Assume that L is context free and consider the word 0p1p0p1p ∈ L, where p is the pumping
number. We can write 0p1p0p1p = uvxyz with a non-empty pumpable area |vx| ≥ 1 and
|vwx| ≤ p. This implies that vwx is in the first 0p1p (case A), or in the middle 1p0p (case
B), or in the last 0p1p (case C).

We know that after tandem-pumping it holds that uvixyiz ∈ L. Choose i = 0, which in case
A yields the word 0k1l0p1p, in case B the word 0p1k0l1p, and in case C the word 0p1p0k1l

for some k < p or some l < p, because at least one character has been removed. None of
these words is in L, which yields the contradiction.

b) The following context-sensitive grammar describes L.

The idea is the following: We use the non-terminal U to mark the right end of the word.
Furthermore, for every bit in the first part of the word zz we produce a corresponding
non-terminal for the second part, i.e., A represents 0, B represents 1, C represents 00, D
represents 01, E represents 10, and F represents 11.

S → TU |00|11|ε T → 0TA|1TB|00C|01D|10E|11F

Note that non-terminals storing the information about the first word are still in the wrong
(”palindrom”) order. Hence, we need the following additional rules:

A0 → 0A A1 → 1A B0 → 0B B1 → 1B C0 → 0C C1 → 1C

D0 → 0D D1 → 1D E0 → 0E E1 → 1E F0 → 0F F1 → 1F

AU → 0U BU → 1U CU → 00 DU → 01 EU → 10 FU → 11

The non-terminal A or B adjacent to the right end of the word (non-terminal U) is turned
into the corresponding bit. As the non-terminals can overhaul terminals (but not other
terminals), this procedure clearly inverts the order of the non-terminals yielding the desired
second half of the word zz.

If one of the non-terminals C, D, E, or F arrives at the right end U , there are definitely no
A’s and B’s left, and the construction is complete.

2

4 Transducer-Robot

The following finite state transducer solves the problem. The transducer has two states S (Seek)

S T
1,1 / RRR
0,1 / RRR
1,0 / 0,0 / RF

0,1 / RF
1,0 / F
1,1 / RRR

0,0 / F

and T (Track). The robot starts in the Seek state, not knowing anything about its position. The
goal of the Seek state is to find a wall. Once a wall is found, the tracking works by following the
wall to the rear-right condition. That is, there is always a piece of wall to the right of the robot,
or diagonally to the rear-right, or both.

As long as the robot has not sensed any piece of wall (r = 0, h = 0), it moves forward with
F . If it senses a wall, either ahead or to the right, it positions itself so as to fulfill the wall to the
rear-right condition. The actions in the tracking state then guarantee that the wall to the rear-
right condition is never invalidated. Finally, the robot will follow the inside of the wall endlessly,
remaining in the tracking state.

3

