Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
WS 2005/2006
Prof. R. Wattenhofer / Roland Flury / Thomas Moscibroda / Stefan Schmid

Discrete Event Systems Exercise 5: Sample Solution

1 The Winter Train Problem

We can model each train individually and combine the corresponding sub-states using an AND-super-state, see the figure below. Additionally, in order to "synchronize" the trains, a third sub-state is needed (shown in the middle) which implements a mutual exclusion: For instance, if there is no train between Stans and Engelberg and if train 1 is in state c1, T1 can enter the critical section and train 2 has to wait. (Notice that if both trains are in states c1 and c2 respectively, T1 has priority.)

2 Token Game

a) In this example, it is easy to enumerate all possible markings in order to disprove the claim. As an alternative, note that the sum of tokens at the places a, e, d, and f is always at most 1 : place e gets only a token if place a loses a token, place d gets only a token if place e loses a token, and similarly for places f and d and a and f.
b) Starting with $[\mathrm{a}, \mathrm{c}]$ and performing all possible transitions yields the following possible markings: $\{[\mathrm{a}, \mathrm{c}],[\mathrm{b}, \mathrm{e}, \mathrm{c}],[\mathrm{d}, \mathrm{b}],[\mathrm{b}, \mathrm{f}, \mathrm{c}]\}$. The number of markings is clearly finite.

3 A Candlelight Dinner

a) (i) The following figure shows a possible solution with three places: Either Alice has the spoon or Bob, or the spoon lies on the table.

(ii) The claim follows directly from the finite state transition graph:

(iii) If Alice and Bob strictly alternate, the petri net looks as follows:

b) The situation could be modelled as shown in the following figure. Note that the petri net is symmetric, since Alice (petri net on the left) and Bob (petri net on the right) behave in the same way. Thereby, AF denotes that Alice has the fork and eats veggies, AS denotes that Alice has the spoon and eats veggies, and the place AFS denotes that Alice uses both fork and spoon to eat spaghetti. BF, BS, and BFS are the corresponding places of Bob. Finally, the place "fork" (or "spoon") means that the fork (or spoon) is free.

c) The additional fork can be taken into account by adding a token to the place "fork free." However, we have to make sure that neither Alice nor Bob has two forks at the same time. This requires two additional transitions as shown in the figure.

d) The petri net now looks as follows:

4 Producer-Consumer System under Mutual Exclusion

The petri nets are attached at the end of this document. Please note the tables indicating the places and transitions of the nets.
Raw parts arrive
Robot picks up raw parts
M1 preprocesses raw parts
Robot picks up preproc．product from M1
．．．and puts it into the buffer
Robot picks preproc．product from the buffer
\ldots and delivers it to M2
Robot picks finished product from M2
．．．and puts it to output line

Models input line，each token represents the raw parts for one item The robot holds the raw parts or one item and moves them to M1 M1 has the raw parts
M1 has finished preprocessing the raw parts M1 is waiting for new raw parts
M2 is waiting for preprocessed parts from the buffer
The robot holds a preprocessed item retrieved from the buffer M2 has a preprocessed item
M2 has finished producing the item
（yu！！s）p The robot holds a preprocessed item and moves it from M1 to the buffer The buffer，holding the preprocessed items
The counter part to the buffer，ensuring its capacity constraints
The robot，under mutual exclusion for all tasks
ー～のナமமへ

pəpunoq pue ә!!! s! łəu pəu!ełqо әપł łеપł Mo૫s (q

$\stackrel{0}{0}$

