ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
WS 2005/2006
Prof. R. Wattenhofer / Thomas Moscibroda / Stefan Schmid

Discrete Event Systems Exercise 3^{1}

1 Regular Languages and Finite Automaton

Consider the NFA A in Figure 1 and assume that $\Sigma=\{0,1\}$.

Figure 1: NFA A.
(i) Transform the NFA into an equivalent deterministic finite automaton.
(ii) Which regular language is accepted by A ?

2 Non-Regular Languages

(i) Consider the following language L_{1} :

$$
L_{2}=\left\{0^{a} 1^{b} 0^{c} 1^{d} \mid a, b, c, d \geq 0 \text { and } a=1, b=2, \text { and } c=d\right\} .
$$

Is the language L_{1} regular? Prove your answer!
(ii) Consider the following slightly adapted language L_{2} :

$$
L_{2}=\left\{0^{a} 1^{b} 0^{c} 1^{d} \mid a, b, c, d \geq 0 \text { and if } a=1 \text { and } b=2, \text { then } c=d\right\} .
$$

Is the language L_{2} regular? Be careful when proving your answer!

[^0]
3 Adapting a Finite Automaton

Consider the DFA in Figure 3, which accepts the language L and let the alphabet be $\Sigma=\{0,1\}$. Further, let $\Phi(L)$ be defined as $\Phi(L)=\left\{w \in \Sigma^{*}\left|\exists x \in \Sigma^{*},|x|=|w|\right.\right.$ and $\left.w x \in L\right\}$. That is, $\Phi(L)$ denotes the set of first halfs of all strings in L.

Figure 2: DFA B.
(i) Give a regular expression that describes the language L.
(ii) Construct a DFA which accepts a string w if and only if $w \in \Phi(L)$.

[^0]: ${ }^{1}$ All problems in this series have appeared in previous exams.

