

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

SS 2005 Prof. R. Wattenhofer / Prof. P. Widmayer / F. Kuhn / R. O'Dell / P. von Rickenbach

Principles of Distributed Computing Exercise 5

1 Pancake Networks

In the lecture, you have encountered several different graphs as underlying network structures (Chapter 5). Here, we will look at another prominent example, the *Pancake graph* P_n .

Define P_n as follows: the vertex set is

$$V(P_n) = \{v_1 v_2 \dots v_n \mid v_i \in [n] \text{ and } v_i \neq v_j \forall i \neq j\}$$

$$\tag{1}$$

where we use $[n] = \{1, 2, ..., n\}$. In other words, $V(P_n) = S_n$, the group of all permutations on n elements. There exists an edge of dimension i for $2 \le i \le n$ when

$$e_i = (u_1 u_2 \dots u_i \dots u_n, v_1 v_2 \dots v_i \dots v_n) \in E(P_n) \iff v_j = u_{i-j+1} \text{ for } 1 \le j \le i \text{ and } v_j = u_j \text{ for } i < j \le n \quad (2)$$

or, we can say that an edge e_i represents a *prefix reversal*

$$v_1v_2\dots v_iv_{i+1}\dots v_n \longleftrightarrow v_i\dots v_2v_1v_{i+1}\dots v_n.$$
(3)

For the following questions, where appropriate, give your answers in terms of $N := |V(P_n)|$ (approximately), the number of vertices, as well as n.

- a) Draw (nicely!) P_n for n = 2, 3, 4. Try to describe a pattern for drawing P_n for any n.
- **b)** What is the degree of each vertex in P_n ?
- c) Can you give bounds on the diameter $D(P_n)$ of the pancake network?
- d) (optional) Show that P_n is Hamiltonian for $n \geq 3$.

The pancake graph has recently been proposed for P2P networks, owing its usefulness to the above and other properties.