Theorem: \(n - m + f = 2 \)

Proof:

[Sketch]

\[
\begin{align*}
 m = 0: & \quad \Rightarrow n - m + f = 1 - 0 + 1 = 2 \checkmark \\
 m > 0: & \quad (\text{assume formula correct for } m-1)
\end{align*}
\]

Tree

- Remove leaf
 \[\Rightarrow n' = n - 1 \]
 \[m' = m - 1 \checkmark \]

Not tree

- Remove edge of cycle
 \[\Rightarrow n' = n - 1 \]
 \[f' = f - 1 \checkmark \]

Theorem: Simple, connected, planar graph with \(n \) nodes has at most \(3n - 6 \) edges \((n \geq 3)\)

Proof:

- Each edge bounds at most 2 faces
- Each face bounded by at least 3 edges

\[3f \leq 2m \]

\[n - m + f = 2 \]

\[3n - 3m + 3f = 6 \quad \Rightarrow 3n - 6 = 3m - 3f \quad \Rightarrow 3m - 2m = m \]
MST ⊆ RNA

Assume Contradiction: e ∈ MST

e ∉ RNA ⇒ there is a point w in the interior (strictly)

Remove e from MST
⇒ Two trees T_u, T_v
w is e of T_u ∪ T_v
w.l.o.g. w ∈ T_u

We can reconnect T_u with T_v with the edge (w, w)
better MST? &
RNA ∈ CG

by Definition

<table>
<thead>
<tr>
<th></th>
<th>RNA</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>≠</td>
<td>≠</td>
</tr>
<tr>
<td>b)</td>
<td>≠</td>
<td>≠</td>
</tr>
<tr>
<td>c)</td>
<td>≠</td>
<td>≠</td>
</tr>
<tr>
<td>Comment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a')</td>
<td>≠</td>
<td>≠</td>
</tr>
<tr>
<td>b')</td>
<td>≠</td>
<td>≠</td>
</tr>
<tr>
<td>c')</td>
<td>≠</td>
<td>≠</td>
</tr>
</tbody>
</table>
$G \subseteq DT$

by Definition

$e \in G$ if disk (u,v) contains no other node

$DT: e \in DT$ if any disk with u,v on boundary contains no other node

Example:

$DT \subseteq G$
MST connected by definition

DT planar by definition ... however, not quite so easy.

Let planar

Assume not

There is an angle $\geq 90^\circ$

edge e exists \Rightarrow angle $< 90^\circ$ \iff
GC contains Minimum Energy Path

Proof:

Let this be MEP

\[s \rightarrow \ldots \rightarrow t \]

Assume two nodes are not neighbors in GC.
Then, there is a node \(w \) in the circle by \(u, w \).

\[u \quad (\quad) \quad v \]

If \(uw \) or \(vw \) are not neighbors then you do the same again (recursively)

Otherwise: \(E(u, w) + E(w, v) = uw^k + vw^k \leq uv^k \) (for \(k \geq 2 \))

GC \ominus UDG

Def: UDG

\[e \in E \text{ of } UDG \iff \text{let } s \bar{1} \].

GC \ominus UDG contains Minimum Energy Path

Proof as above, except the first path is MEP in UDG