Chapter 8
DOMINATING SETS
Mobile Computing
Summer 2004

Overview
- Motivation
- Dominating Set
- Connected Dominating Set
- The “Greedy” Algorithm
- The “Tree Growing” Algorithm
- The “Marking” Algorithm
- The “k-Local” Algorithm
- The “Dominator!” Algorithm
- The “Largest ID” Algorithm

Discussion
- We have seen: 10 Tricks \(\rightarrow 2^{10} \) routing algorithms
- In reality there are almost that many!
- Q: How good are these routing algorithms?!? Any hard results?
 A: Almost none! Method-of-choice is simulation…
 Perkins: “if you simulate three times, you get three different results”
- Flooding is key component of (many) proposed algorithms, including most prominent ones (AODV, DSR)
- At least flooding should be efficient

Finding a Destination by Flooding
Finding a Destination *Efficiently*

- Idea: Some nodes become backbone nodes (gateways). Each node can access and be accessed by at least one backbone node.

- Routing:
 1. If source is not a gateway, transmit message to gateway
 2. Gateway acts as proxy source and routes message on backbone to gateway of destination.
 3. Transmission gateway to destination.

Backbone

- (Connected) Dominating Set
 - A Dominating Set DS is a subset of nodes such that each node is either in DS or has a neighbor in DS.
 - A Connected Dominating Set CDS is a connected DS, that is, there is a path between any two nodes in CDS that does not use nodes that are not in CDS.
 - A CDS is a good choice for a backbone.
 - It might be favorable to have few nodes in the CDS. This is known as the Minimum CDS problem.

Formal Problem Definition: M(C)DS

- Input: We are given an (arbitrary) undirected graph.
- Output: Find a Minimum (Connected) Dominating Set, that is, a (C)DS with a minimum number of nodes.

- Problems
 - M(C)DS is NP-hard
 - Find a (C)DS that is “close” to minimum (approximation)
 - The solution must be local (global solutions are impractical for mobile ad-hoc network) – topology of graph “far away” should not influence decision who belongs to (C)DS.
Greedy Algorithm for Dominating Sets

- Idea: Greedy choose "good" nodes into the dominating set.
- Black nodes are in the DS
- Grey nodes are neighbors of nodes in the CDS
- White nodes are not yet dominated, initially all nodes are white.
- Algorithm: Greedily choose a node that colors most white nodes.
- One can show that this gives a $\log \Delta$ approximation, if Δ is the maximum node degree of the graph. (The proof is similar to the “Tree Growing” proof on 6/14ff.)
- One can also show that there is no polynomial algorithm with better performance unless $P=NP$.

CDS: The “too simple tree growing” algorithm

- Idea: start with the root, and then greedily choose a neighbor of the tree that dominates as many as possible new nodes
- Black nodes are in the CDS
- Grey nodes are neighbors of nodes in the CDS
- White nodes are not yet dominated, initially all nodes are white.
- Start: Choose the node a maximum degree, and make it the root of the CDS, that is, color it black (and its white neighbors grey).
- Step: Choose a grey node with a maximum number of white neighbors and color it black (and its white neighbors grey).

Example of the “too simple tree growing” algorithm

Graph with $2n+2$ nodes; tree growing: $|\text{CDS}|=n+2$; Minimum $|\text{CDS}|=4$

Tree Growing Algorithm

- Idea: Don’t scan one but two nodes!
- Alternative step: Choose a grey node and its white neighbor node with a maximum sum of white neighbors and color both black (and their white neighbors grey).
Analysis of the tree growing algorithm

- Theorem: The tree growing algorithm finds a connected set of size $|\text{CDS}| \leq 2(1+H(\Delta)) \cdot |\text{DS}_{\text{OPT}}|$.
- DS_{OPT} is a (not connected) minimum dominating set
- Δ is the maximum node degree in the graph
- H is the harmonic function with $H(n) \approx \log(n)+0.7$

In other words, the connected dominating set of the tree growing algorithm is at most a $O(\log(\Delta))$ factor worse than an optimum minimum dominating set (which is NP-hard to compute).

With a lower bound argument (reduction to set cover) one can show that a better approximation factor is impossible, unless $P=NP$.

Proof Sketch

- The proof is done with amortized analysis.
- Let S_u be the set of nodes dominated by $u \in \text{DS}_{\text{OPT}}$, or u itself. If a node is dominated by more than one node, we put it in one of the sets.
- We charge the nodes in the graph for each node we color black. In particular we charge all the newly colored grey nodes. Since we color a node grey at most once, it is charged at most once.
- We show that the total charge on the vertices in an S_u is at most $2(1+H(\Delta))$, for any u.

Charge on S_u

- Initially $|S_u| = u_0$.
- Whenever we color some nodes of S_u, we call this a step.
- The number of white nodes in S_u after step i is u_i.
- After step k there are no more white nodes in S_u.
- In the first step $u_0 - u_1$ nodes are colored (grey or black). Each vertex gets a charge of at most $2/(u_0 - u_1)$.
- After the first step, node u becomes eligible to be colored (as part of a pair with one of the grey nodes in S_u). If u is not chosen in step i (with a potential to paint u_i nodes grey), then we have found a better (pair of) node. That is, the charge to any of the new grey nodes in step i in S_u is at most $2/u_i$.

Adding up the charges in S_u

$$C \leq \frac{2}{u_0 - u_1} (u_0 - u_1) + \sum_{i=1}^{k-1} \frac{2}{u_i} (u_i - u_{i+1})$$

$$= 2 + 2 \sum_{i=1}^{k-1} \frac{u_i - u_{i+1}}{u_i}$$

$$\leq 2 + 2 \sum_{i=1}^{k-1} (H(u_i) - H(u_{i+1}))$$

$$= 2 + 2(H(u_1) - H(u_k)) = 2(1+H(u_1)) = 2(1+H(\Delta))$$
Discussion of the tree growing algorithm

- We have an extremely simple algorithm that is asymptotically optimal unless $P \neq NP$. And even the constants are small.

- Are we happy?

- Not really. How do we implement this algorithm in a real mobile network? How do we figure out where the best grey/white pair of nodes is? How slow is this algorithm in a distributed setting?

- We need a fully distributed algorithm. Nodes should only consider local information.

The Marking Algorithm

- Idea: The connected dominating set CDS consists of the nodes that have two neighbors that are not neighboring.

1. Each node u compiles the set of neighbors $N(u)$
2. Each node u transmits $N(u)$, and receives $N(v)$ from all its neighbors
3. If node u has two neighbors v,w and w is not in $N(v)$ (and since the graph is undirected v is not in $N(w)$), then u marks itself being in the set CDS.

 - Completely local; only exchange $N(u)$ with all neighbors
 - Each node sends only 1 message, and receives at most Δ
 - Messages have size $O(\Delta)$

- Is the marking algorithm really producing a connected dominating set? How good is the set?

Example for the Marking Algorithm

Correctness of Marking Algorithm

- We assume that the input graph G is connected but not complete.

- Note: If G was complete then constructing a CDS would not make sense. Note that in a complete graph, no node would be marked.

- We show:

 The set of marked nodes CDS is
 a) a dominating set
 b) connected
 c) a shortest path in G between two nodes of the CDS is in CDS
Proof of a) dominating set

- Proof: Assume for the sake of contradiction that node u is a node that is not in the dominating set, and also not dominated. Since no neighbor of u is in the dominating set, the nodes $N^+(u) := u \cup N(u)$ form:
 - a complete graph
 - if there are two nodes in $N(u)$ that are not connected, u must be in the dominating set by definition
 - no node $v \in N(u)$ has a neighbor outside $N(u)$
 - or, also by definition, the node v is in the dominating set

- Since the graph G is connected it only consists of the complete graph $N^+(u)$. We precluded this in the assumptions, therefore we have a contradiction.

Proof of b) connected, c) shortest path in CDS

- Proof: Let p be any shortest path between the two nodes u and v, with $u, v \in CDS$.

- Assume for the sake of contradiction that there is a node w on this shortest path that is not in the connected dominating set.

- Then the two neighbors of w must be connected, which gives us a shorter path. This is a contradiction.

Improving the Marking Algorithm

- We give each node u a unique $id(u)$.

- Rule 1: If $N^+(v) \subseteq N^+(u)$ and $id(v) < id(u)$, then do not include node v into the CDS.

- Rule 2: Let $u, w \in N(v)$. If $N(v) \subseteq N(u) \cup N(w)$ and $id(v) < id(u)$ and $id(v) < id(w)$, then do not include v into the CDS.

- (Rule 2+: You can do the same with more than 2 covering neighbors, but it gets a little more intricate.)

- …for a quiet minute: Why are the identifiers necessary?

Example for improved Marking Algorithm

- Node 17 is removed with rule 1
- Node 8 is removed with rule 2
Quality of the Marking Algorithm

- Given an Euclidean chain of \(n \) homogeneous nodes
- The transmission range of each node is such that it is connected to the \(k \) left and right neighbors, the id’s of the nodes are ascending.

- An optimal algorithm (and also the tree growing algorithm) puts every \(k \)’th node into the CDS. Thus \(|\text{CDS}_{\text{OPT}}| \approx n/k \); with \(k = n/c \) for some positive constant \(c \) we have \(|\text{CDS}_{\text{OPT}}| = O(1) \).

- The marking algorithm (also the improved version) does mark all the nodes (except the \(k \) leftmost ones). Thus \(|\text{CDS}_{\text{Marking}}| = n - k \); with \(k = n/c \) we have \(|\text{CDS}_{\text{Marking}}| = \Omega(n) \).

- The worst-case quality of the marking algorithm is worst-case! 😊

The k-local Algorithm

Input:
- Local Graph
- Fractional Dominating Set
- Dominating Set
- Connected Dominating Set

Phase A: Distributed linear program rel. high degree gives high value

Phase B: Probabilistic algorithm

Phase C: Connect DS by “tree” of “bridges”

Result of the k-local Algorithm

- Distributed Approximation

Theorem: \(E[|\text{DS}|] \leq O(\alpha \ln \Delta \cdot |\text{DS}_{\text{OPT}}|) \)

- The value of \(\alpha \) depends on the number of rounds \(k \) (the locality)

\[\alpha \leq (\Delta + 1)^{5/\sqrt{k}} \]

- The analysis is rather intricate… 😊

Unit Disk Graph

- We are given a set \(V \) of nodes in the plane (points with coordinates).
- The unit disk graph \(UDG(V) \) is defined as an undirected graph (with \(E \) being a set of undirected edges). There is an edge between two nodes \(u, v \) iff the Euclidian distance between \(u \) and \(v \) is at most 1.
- Think of the unit distance as the maximum transmission range.

- We assume that the unit disk graph \(UDG \) is connected (that is, there is a path between each pair of nodes)
- The unit disk graph has many edges.
- Can we drop some edges in the \(UDG \) to reduced complexity and interference?
The “Dominator!” Algorithm

• For the important special case of Euclidean Unit Disk Graphs there is a simple marking algorithm that does the job.

• We make the simplifying assumptions that MAC layer issues are resolved: Two nodes u,v within transmission range 1 receive both all their transmissions. There is no interference, that is, the transmissions are locally always completely ordered.

• Initially no node is in the connected dominating set CDS.

1. If a node u has not yet received an “I AM A DOMINATOR, BABY!” message from any other node, node u will transmit “I AM A DOMINATOR, BABY!”

2. If node v receives a message “I AM A DOMINATOR, BABY!” from node u, then node v is dominated by node v.

This gives a dominating set. But it is not connected.

The “Dominator!” Algorithm Continued

3. If a node w is dominated by more two dominators u and v, and node w has not yet received a message “I am dominated by u and v”, then node w transmits “I am dominated by u and v” and enters the CDS.

• And since this is still not quite enough…

4. If a neighboring pair of nodes w_1 and w_2 is dominated by dominators u and v, respectively, and have not yet received a message “I am dominated by u and v”, or “We are dominated by u and v”, then nodes w_1 and w_2 both transmit “We are dominated by u and v” and enter the CDS.

“Dominator Algorithm”: Results

• The “Dominator!” Algorithm produces a connected dominating set.

• The algorithm is completely local. (is it?)

• Each node only has to transmit one or two messages of constant size.

• The connected dominating set is asymptotically optimal, that is, $|\text{CDS}| = O(|\text{CDS}_{OPT}|)$.

• Routes on backbone (CDS) are only by a constant factor longer than on UDG.
"Dominator Algorithm": Remarks

- "Dominator" algorithm seems to be very local.
- If two neighbors want to join the DS simultaneously, we have a problem → synchronization between nodes is a problem!
- Algorithm actually calculates a maximal independent set (MIS).
- When taking care of all synchronization problems, best known MIS algorithm needs time $O(\log n)$.
- Lower Bound for general graphs: $\Omega\left(\frac{\log n}{\log \log n}\right)$
- If you want to know more, visit PODC course!

The "Largest-ID" Algorithm

- All nodes have unique IDs
- Algorithm for each node:
 1. Send ID to all neighbors
 2. Tell node with largest ID in neighborhood that it has to join the DS
- Algorithm computes a DS in 2 rounds (extremely local!)

"Largest ID" Algorithm, Analysis I

- Assume, node IDs are at random, graph is UDG.
- We look at a disk S of diameter 1:

Nodes inside S have distance at most 1.
→ they form a clique

How many nodes in S are selected for the DS?

"Largest ID" Algorithm, Analysis II

- Nodes which select nodes in S are in disk of radius $3/2$ which can be covered by S and 20 other disks S_i of diameter 1.
"Largest ID" Algorithm: Analysis III

- How many nodes in S are chosen by nodes in a disk S_i?

- $x = \# \text{ of nodes in } S$, $y = \# \text{ of nodes in } S_i$:

 - A node $u \in S$ is only chosen by a node in S_i if $\text{ID}(u) > \max_{v \in S_i}\text{ID}(v)$ (all nodes in S_i see each other).

 - The probability for this is: $\frac{1}{1 + y}$

 - Therefore, the expected number of nodes in S chosen by nodes in S_i is at most:

 $$\min \left\{ y, \frac{x}{1 + y} \right\}$$

 Because at most y nodes in S_i can choose nodes in S and because of linearity of expectation.

"Largest ID" Algorithm, Analysis IV

- From $x \leq n$ and $y \leq n$, it follows that $\min \left\{ y, \frac{x}{1 + y} \right\} \leq \sqrt{n}$

- Hence, in expectation the DS contains at most $20\sqrt{n}$ nodes per disk with diameter 1.

- An optimal algorithm needs to choose at least 1 node in the disk with radius 1 around any node.

- This disk can be covered by a constant (9) number of disks of diameter 1.

- The algorithm chooses at most $O(\sqrt{n})$ times more disks than an optimal one.

"Largest ID" Algorithm, Remarks

- For typical settings, the "Largest ID" algorithm produces very good dominating sets (also for non-UDGs)

- There are UDGs where the "Largest ID" algorithm computes an $\Omega(\sqrt{n})$-approximation (analysis is tight).

- If nodes know the distances to each other, there is a iterative variant of the "Largest ID" algorithm which computes a constant approximation in $O(\log \log n)$ time.

Overview of (C)DS Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst-Case Guarantees</th>
<th>Local (Distributed)</th>
<th>General Graphs</th>
<th>CDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greedy</td>
<td>Yes, optimal unless $P=NP$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Tree Growing</td>
<td>Yes, optimal unless $P=NP$</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Marking</td>
<td>No</td>
<td>Yes (const.)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>k-local</td>
<td>Yes, but with add. factor α</td>
<td>Yes (k-local)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>"Dominator!"</td>
<td>Asymptotically Optimal</td>
<td>Yes (log n)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>"Largest ID" simple / iter.</td>
<td>$O(\sqrt{n})$ / constant</td>
<td>Yes (const / loglog n)</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>