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Chapter 2  

Symmetry Breaking 2: Leader Election 

Section 2.1: Anonymous Leader Election 
  
(Sometimes good to have a special node: a “leader”) 
(Remember 2-coloring algorithm in tree – who is the root?) 
(Ring is drosophila of distributed computing. But also token ring standard.) 
 
Problem 2.1 [Leader Election]: Each processor eventually decides whether it is a leader or 
not, subject to the constraint that exactly one is a leader. 
 
Remark: 

• More formally: processors are in one of three states: undecided, leader, not leader. 
Initially every process is in the undecided state. When leaving the undecided state, a 
processor goes into a terminated state (leader or not leader).  

 
Definition 2.2 [Anonymous]: A system is anonymous if processors do not have unique 
identifiers.  
 
Definition 2.3 [Uniform]: An algorithm is called uniform if the number of processors (“n”) is 
not known to the algorithm (to the processors, if you wish). If n is known, the algorithm is 
called non-uniform. 
 
Whether or not a leader can be elected in an anonymous system depends whether the network 
is symmetric (ring, complete graph, complete bipartite graph, etc.) or asymmetric (star, single 
node with highest degree, etc.). We will now show that non-uniform anonymous leader 
election for synchronous rings is impossible. The idea is that in a ring symmetry can always 
be maintained.   
 
Lemma 2.4: After round k of a deterministic algorithm A, each processor is in state sk.  
 
Proof by induction: All processors start in the same state. A round in a synchronous algorithm 
consists of the three steps sending, receiving, local computation. All processors send the same 
message(s), receive the same message(s), do the same local computation, and therefore end up 
in the same state. 

 
Proof: With Lemma 2.4: If one processor ever decides to become a leader (or a non- leader), 
then every other does too, contradicting 2.1 (for more than one processor). This holds for non-
uniform algorithms, and therefore also for uniform algorithms. This holds for synchronous 
algorithms, and therefore also for asynchronous algorithms.  
 
Remarks:  

Theorem 2.5 [Anonymous Leader Election]: Leader election in an anonymous ring is 
impossible.  
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• Sense of direction is the ability of processors to distinguish neighbor processors in an 
anonymous setting. In a ring, for example, a node can distinguish the clockwise and 
the counterclockwise neighbor. Sense of direction does not help in anonymous leader 
election. 

• Theorem 2.5 also holds for other symmetric network topologies. 
• The algorithm is not allowed to use randomization! 

 

Section 2.2: Asynchronous Ring 
 
In the following, we assume non-anonymity. Each node has a unique identifier (as in the 
previous chapter). 

 
Theorem 2.7 [Analysis of Algorithm 2.6]: Algorithm 2.6 is correct. The time complexity is 
O(n). The message complexity is O(n2).  
 
Proof: Let node z be the node with the maximum identifier. Node z will eventually send its 
identifier in clockwise direction, and since no other node can swallow the message “z”, the 
message will arrive at z again – then z declares itself to be the leader. Every other processor 
will declare non- leader when forwarding message “z”. Since there are n identifiers in the 
system, each processor will at most forward n messages, giving a message complexity of at 
most n2. We start measuring the time when the first processor (the first that “wakes up”) sends 
its identifier. For asynchronous time complexity (Chapter 1) we assume that each message 
takes at most one time unit to arrive at its destination. After at most n-1 time units the 
message therefore arrives at processor z, waking z up. Routing the message “z” around the 
ring takes at most n time units. Therefore processor z decides not after time 2n-1. Every other 
processor decides before processor z. 
 
Remarks: 

• Note that in Algorithm 2.6 nodes need to distinguish between clockwise and counter-
clockwise neighbors. In fact they do not: It is OK to simply send your own identifier 
to any neighbor, and forward a message m to the neighbor you did not receive the 
message m from. 

• If the identifiers of the nodes are ordered in the ring, then there are admissible (in fact, 
synchronous) executions where the message complexity is asymptotically tight. 

• Can we achieve a better message complexity? Yes, with smarter forwarding. 
 

Algorithm 2.6 [Clockwise]: Every node v does the following: 
• Node v sends a message with its identifier (for simplicity also “v”) to its clockwise 

neighbor. (Remark: if node v already received a message “w” with w > v, then 
node v can skip this step; if node v receives its first message “w” with w < v, then 
node v will immediately send “v”.) 

• If v receives a message “w” with w > v, then v forwards “w” to its clockwise 
neighbor. Node v decides to not be the leader, if it has not done so already. 

• If v receives a its own identifier “v”, then v decides to be the leader. 
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Remark: 

• This algorithm is asynchronous and uniform. 
 
Theorem 2.9 [Analysis of Algorithm 2.8]: Algorithm 2.8 is correct. The time complexity is 
O(n). The message complexity is O(n log n).  
 
Proof: Correctness is as in Theorem 2.7. The time complexity is O(n) since the node with 
maximum identifier z sends messages with round-trip times 2, 4, 8, 16, …, 2·2k with k · log 
n + 1. Proving message complexity is slightly harder: if a node v manages to survive round r, 
then no other node in distance 2r (or less) survives round r. That is, node v is the only node in 
its 2r-neighborhood that tries round r+1. Since this is the same for every node, less than n/2r 
nodes try round r+1. Being active in round r costs 2·2·2r messages. Therefore, round r costs at 
most 2·2·2r · n/2r-1 = 8n messages. Since there are only logarithmic many possible rounds, the 
message complexity follows immediately. 
 
Remark: 

• It is natural to ask whether one can design an algorithm with even less message 
complexity. We answer this question in the next section.  

 

Section 2.3: Lower Bounds 
 
(Lower bounds in distributed computing are often easier than in the standard RAM model 
because one can argue with messages that need to be exchanged.) 
 
In this section we present a first lower bound. We show that Algorithm 2.8 is asymptotically 
optimal.  
  
Definition 2.10 [Execution]: An execution of a distributed algorithm is a sorted list of events. 
An event is a record (time, node, type, message), where type is “send” or “receive”.    
 
Remarks:  

• We assume throughout this course that no two events happen at exactly the same time 
(or one can break ties arbitrarily). 

• An execution of an asynchronous algorithm is generally not only determined by the 
algorithm but also by a “god- like” scheduler. If more than one message is in transit, 
the scheduler can choose which one arrives first.  

Algorithm 2.8 [Radius growth, Ideas only]: (for detailed code see Attiya/Welch Alg. 3.1) 
• Whenever a node v sees a message “w” with w > v, then the node decides to not be 

a leader and becomes passive. 
• Active nodes search in an exponentially growing neighborhood (clockwise and 

counterclockwise) for nodes with higher identifiers, by sending out “probe” 
messages. A probe messages uses a power-of-two time-to- live (TTL); it is reflected 
when the TTL is zero (“reply” message). If there is no better candidate in the search 
area, then the node doubles the TTL and sends the next two probe messages (two 
neighbors). If there is a better candidate in the search area, then the node becomes 
passive. 

• If a node v receives its own “probe v” message (not a reply), then v decides to be 
the leader. 
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• If two messages are transmitted over the same directed edge, then it is sometimes 
required that the message first transmitted will also be first received (“FIFO”). 

 
For our lower bound, we assume the following model: 

• We are given an asynchronous ring. 
• We only accept uniform algorithms where the node with the maximum identifier can 

be the leader. Additionally, every node that is not the leader must know the identity of 
the leader. These two requirements can be dropped when using a more complicated 
proof. 

• We play god and specify which message in transmission arrives. But we respect the 
FIFO conditions for links. 

 
Definition 2.11 [Open Schedule] A schedule is an execution chosen by the scheduler. A 
schedule for a ring is open if there is an open edge in the ring. An open edge (undirected) is an 
edge where no message traversing the edge has been received so far. 
 
The proof is by induction. First we show the base case: 
 
Lemma 2.12: We are given a ring R with two nodes. We can construct an open schedule in 
which at least one message is received. 
 
Proof: Let the two nodes be u and v with u < v. Node u must learn the identity of node v, thus 
receive at least one message. We stop the execution of the algorithm A as soon as the first 
message is received. (If the first message is received by v, bad luck for the algorithm!) Then 
the other edge in the ring (on which the received message was not transmitted) is open. 
 
Since the algorithm needs to be uniform, maybe the open edge is not really an edge at all. 
Nobody can tell. We use this to glue two rings together, by breaking up this imaginary open 
edge and connect two rings by two (possibly imaginary) edges. We do this inductively. 
 
Lemma 2.13: When gluing two rings with open schedules of size n/2 together, we can 
construct a ring of size n with an open schedule. For solving leader election, Ω(n) messages 
have to be exchanged. 
 
Proof: Without loss of generality, sub-ring R1 contains the maximum identifier. Thus each 
node in sub-ring R2 must learn the identity of the maximum identifier, thus at least n/2 new 
messages must be received. The only problem is that we cannot connect the two sub-rings 
with both edges since the new ring needs to remain open. Thus only messages over one of the 
edges can be received. We play god (very much) and look into the future: we check what 
happens when we close only one of these connecting edges. With the argument that n/2 new 
messages must be received we know that there is at least one edge that will produce at least 
n/4 new messages when being scheduled. We schedule this edge, and leave the other open. 

 
Proof: M(n) ¸ 2 M(n/2) + n/4 (Lemma 2.13), with M(2) ¸ 1 (Lemma 2.12).  
 

Theorem 2.14 [Asynchronous Leader Election Lower Bound]: Any uniform leader 
election algorithm for asynchronous rings has Ω(n log n) message complexity. 
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Section 2.4: Synchronous Ring 
 
The lower bound relied on delaying messages for a very long time. Since this is impossible in 
the synchronous model, we might get a better message complexity there. 
 
Idea: In the synchronous model, not receiving a message is information! 
 
First we have some additional assumptions: 

• We assume that the algorithm is non-uniform (the ring size n is known) 
• We assume that every node starts at the same time 
• The node with the minimum identifier becomes the leader; identifiers are integers. 

 
 
Remarks: 

• Message complexity is indeed n. 
• But time complexity is huge! If m is the minimum identifier it is m·n.  
• The synchronous start and the non-uniformity assumptions can be dropped, by using 

the wake-up technique, and by letting messages travel slowly. 
• Bit complexity: Try to have only short messages, and count the total number of bits 

used. 
• Several synchronous lower bounds: comparison-based algorithms (or if the time 

complexity cannot be a function of the identifiers) have message complexity Ω(n log 
n).  

• We (implicitly) learn leader election algorithms for other graphs in the next chapter. 
 
 

Algorithm 2.15 [Synchronous Leader Election]: Each phase consists of n time steps. The 
nodes count the phases, starting with 0. If, at the beginning of phase v node v has not 
received as message, v decides to be the leader and sends a message around the ring. 


