
SS 2004 Prof. R. Wattenhofer / Dr. C. Cachin / F. Kuhn / R. O’Dell

Principles of Distributed Computing

Exercise 7: Sample Solution

1 Failure Detectors

a) All nodes regularly (always after time τ) send an alive message to all other nodes. Then, no
node has to wait longer than τ + ∆ to receive a message of a correct server.

Algorithm 1 Code for Pi:

1: Di := {1, . . . , n}
2:

3: // Thread 1:
4: while true do
5: send alive to all servers;
6: sleep(τ)
7: end while
8:

9: // Thread 2:
10: upon receiving alive from Pj , remove j from Di

11: when more than τ + ∆ time has passed since the last (alive) message from Pj was received,
add j to Di

b) See Algorithm 2 on the next page.

2 Timed Reliable Broadcast

First note that as soon as a correct server r-delivers a message m, all other correct server have
r-delivered a message m after time d∆ because every two correct servers are connected by a path
of at most length d consisting only of correct servers.

Suppose that the sender is faulty. It may be that he still manages to send a message to some
of its neighbors before he fails. Like that, the message can first be sent from one faulty server to
another until reaching a correct server after at most f steps. Thus, if a there is a correct server
which r-delivers a message m, there must be a correct server which r-delivers a message after at
most time f∆.

Adding the two times (f∆ and d∆), we get the (f + d)∆-Timeliness.



Algorithm 2 Code for Pi:

1: Di := ∅
2: ∆ := default time-out interval
3:

4: // Thread 1:
5: while true do
6: send alive to all servers;
7: sleep(τ)
8: end while
9:

10: // Thread 2:
11: while true do
12: for all j ∈ {1, . . . , n} do
13: if j 6∈ Di and Pi did not receive alive during the last τ + ∆ ticks of Pi’s clock then
14: Di := Di ∪ {j} // time-out: Pi suspects Pj has crashed
15: end if
16: end for
17: end while
18:

19: // Thread 3:
20: upon receiving alive from Pj :
21: if j ∈ Di then
22: Di := Di \ {j};
23: ∆ := ∆ + 1
24: end if

2


