Principles of Distributed Computing
Exercise 7: Sample Solution

1 Failure Detectors

a) All nodes regularly (always after time τ) send an alive message to all other nodes. Then, no node has to wait longer than $\tau + \Delta$ to receive a message of a correct server.

Algorithm 1 Code for P_i:

1: $D_i := \{1, \ldots, n\}$
2: while true do
3: // Thread 1:
4: send alive to all servers;
5: sleep(τ)
6: end while
7: // Thread 2:
8: upon receiving alive from P_j, remove j from D_i
9: when more than $\tau + \Delta$ time has passed since the last (alive) message from P_j was received, add j to D_i

b) See Algorithm 2 on the next page.

2 Timed Reliable Broadcast

First note that as soon as a correct server r-delivers a message m, all other correct server have r-delivered a message m after time $d\Delta$ because every two correct servers are connected by a path of at most length d consisting only of correct servers.

Suppose that the sender is faulty. It may be that he still manages to send a message to some of its neighbors before he fails. Like that, the message can first be sent from one faulty server to another until reaching a correct server after at most f steps. Thus, if a there is a correct server which r-delivers a message m, there must be a correct server which r-delivers a message after at most $f\Delta$.

Adding the two times ($f\Delta$ and $d\Delta$), we get the $(f + d)\Delta$-Timeliness.
Algorithm 2 Code for P_i:

1: $D_i := \emptyset$
2: $\Delta := \text{default time-out interval}$
3:
4: // Thread 1:
5: while true do
6: send $alive$ to all servers;
7: sleep(τ)
8: end while
9:
10: // Thread 2:
11: while true do
12: for all $j \in \{1, \ldots, n\}$ do
13: if $j \notin D_i$ and P_i did not receive $alive$ during the last $\tau + \Delta$ ticks of P_i’s clock then
14: $D_i := D_i \cup \{j\}$ // time-out: P_i suspects P_j has crashed
15: end if
16: end for
17: end while
18:
19: // Thread 3:
20: upon receiving $alive$ from P_j:
21: if $j \in D_i$ then
22: $D_i := D_i \setminus \{j\}$
23: $\Delta := \Delta + 1$
24: end if