Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Principles of Distributed Computing Exercise 4: Sample Solution

1 Bad Queues in a Mesh

Figure 1: $m-2$ packets congest at node v
In order to obtain big queues at a node v, packets need to arrive from all three possible directions in each step. Therefore, the maximum number of destinations from one direction in a column is $m-2$. See Figure 1. In each step, the queue grows by 2 and there are $(m-2) / 3$ steps. Thus the queue size grows to

$$
\frac{2}{3}(m-2)
$$

2 Good Queues in a Mesh

Following the lead given in the exercise we want to bound the probability $P_{2 e m}$ that a particular column contains 2 em or more destination packets. Analogous to the proof of Theorem 4.10 in the lecture, we have

$$
\begin{equation*}
P_{2 e m}<\binom{m^{2}}{2 e m} \cdot\left(\frac{1}{m}\right)^{2 e m} \tag{1}
\end{equation*}
$$

(since we put $2 e m$ out of the m^{2} destination packets in that column, each with a probability $1 / m$). Using the inequality of the lecture (in the same proof) we can further simplify this to

$$
\begin{equation*}
P_{2 e m}<\left(\frac{e m^{2}}{2 e m}\right)^{2 e m}\left(\frac{1}{m}\right)^{2 e m}=\left(\frac{1}{2}\right)^{2 e m} \tag{2}
\end{equation*}
$$

to obtain that the probability for a single column to contain more than $2 e m$ packets is "really small" (i.e. in $o\left(2^{-m}\right)$).

Since we want a bound on the column with the maximum number of destination packets, we can compute the probability $P_{\text {all }}$ that all m columns contain less than $2 e m$ packets:

$$
\begin{equation*}
P_{\mathrm{all}}=\left(1-P_{2 e m}\right)^{m}>\left(1-\frac{1}{2^{2 e m}}\right)^{m} \tag{3}
\end{equation*}
$$

To simplify things, we can use the following inequality

$$
\begin{equation*}
\left(1-\frac{p}{k}\right)^{k} \geq 1-p \tag{4}
\end{equation*}
$$

for $0<p<1$ and $k \geq 1$. Plugging (4) into (3) we get

$$
\begin{equation*}
P_{\mathrm{all}}>\left(1-\frac{m 2^{-2 e m}}{m}\right)^{m} \geq 1-\frac{m}{2^{2 e m}} \geq 1-\frac{1}{m} \tag{5}
\end{equation*}
$$

where we used that $m / 2^{m} \leq 1 / m$.
Altogether, the argument is then as follows: The probability that all columns contain less than $O(m)$ packets is high, namely in $1-O(1 / m)$. Therefore, we also have a high probability that the column containing the most number of destinations also gets only $O(m)$ packets. To route a packet along a row takes at most $m-1$ time steps. Once it has arrived at the designated column, it will have to wait for at most $O(m)$ other packets (with high probability). Altogether each packet needs time $O(m)$ to arrive at its destination.

