Overview

- Motivation
- Dominating Set
- Connected Dominating Set

- The “Greedy” Algorithm
- The “Tree Growing” Algorithm
- The “Marking” Algorithm
- The “k-Local” Algorithm
- The “Dominator!” Algorithm
Discussion

• Last lecture: 10 Tricks → 2^{10} routing algorithms
• In reality there are almost that many!

• Q: How good are these routing algorithms?!? Any hard results?
• A: Almost none! Method-of-choice is simulation…
• Perkins: “if you simulate three times, you get three different results”

• Flooding is key component of (many) proposed algorithms, including most prominent ones (AODV, DSR)
• At least flooding should be efficient
Finding a Destination by Flooding
Finding a Destination *Efficiently*
Backbone

- Idea: Some nodes become backbone nodes (gateways). Each node can access and be accessed by at least one backbone node.

- Routing:
 1. If source is not a gateway, transmit message to gateway
 2. Gateway acts as proxy source and routes message on backbone to gateway of destination.
 3. Transmission gateway to destination.
(Connected) Dominating Set

- A **Dominating Set** DS is a subset of nodes such that each node is either in DS or has a neighbor in DS.

- A **Connected Dominating Set** CDS is a connected DS, that is, there is a path between any two nodes in CDS that does not use nodes that are not in CDS.

- A CDS is a good choice for a backbone.

- It might be favorable to have few nodes in the CDS. This is know as the Minimum CDS problem.
Formal Problem Definition: M(C)DS

- **Input**: We are given an (arbitrary) undirected graph.

- **Output**: Find a Minimum (Connected) Dominating Set, that is, a (C)DS with a minimum number of nodes.

- **Problems**
 - M(C)DS is **NP-hard**
 - Find a (C)DS that is “close” to minimum (**approximation**)
 - The solution must be **local** (global solutions are impractical for mobile ad-hoc network) – topology of graph “far away” should not influence decision who belongs to (C)DS
Greedy Algorithm for Dominating Sets

• Idea: Greedy choose “good” nodes into the dominating set.

• Black nodes are in the DS
• Grey nodes are neighbors of nodes in the CDS
• White nodes are not yet dominated, initially all nodes are white.

• Algorithm: Greedily choose a node that colors most white nodes.

• One can show that this gives a log \(\Delta \) approximation, if \(\Delta \) is the maximum node degree of the graph. (The proof is similar to the “Tree Growing” proof on 6/14ff.)
• One can also show that there is no polynomial algorithm with better performance unless P=NP.
CDS: The “too simple tree growing” algorithm

- Idea: start with the root, and then greedily choose a neighbor of the tree that dominates as many as possible new nodes.

- Black nodes are in the CDS
- Grey nodes are neighbors of nodes in the CDS
- White nodes are not yet dominated, initially all nodes are white.

- Start: Choose the node a maximum degree, and make it the root of the CDS, that is, color it black (and its white neighbors grey).

- Step: Choose a grey node with a maximum number of white neighbors and color it black (and its white neighbors grey).
Example of the "too simple tree growing" algorithm

Graph with 2n+2 nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4
Tree Growing Algorithm

• Idea: Don’t scan one but two nodes!

• Alternative step: Choose a grey node and its white neighbor node with a maximum sum of white neighbors and color both black (and their white neighbors grey).
Analysis of the tree growing algorithm

- Theorem: The tree growing algorithm finds a connected set of size $|\text{CDS}| \leq 2(1+H(\Delta)) \cdot |\text{DS}_{\text{OPT}}|$.

- DS_{OPT} is a (not connected) minimum dominating set
- Δ is the maximum node degree in the graph
- H is the harmonic function with $H(n) \approx \log(n)+0.7$

- In other words, the connected dominating set of the tree growing algorithm is at most a $O(\log(\Delta))$ factor worse than an optimum minimum dominating set (which is NP-hard to compute).

- With a lower bound argument (reduction to set cover) one can show that a better approximation factor is impossible, unless P=NP.
Proof Sketch

• The proof is done with amortized analysis.

• Let S_u be the set of nodes dominated by $u \in DS_{\text{OPT}}$, or u itself. If a node is dominated by more than one node, we put it in one of the sets.

• We charge the nodes in the graph for each node we color black. In particular we charge all the newly colored grey nodes. Since we color a node grey at most once, it is charged at most once.

• We show that the total charge on the vertices in an S_u is at most $2(1+H(\Delta))$, for any u.
Charge on S_u

- Initially $|S_u| = u_0$.
- Whenever we color some nodes of S_u, we call this a step.
- The number of white nodes in S_u after step i is u_i.
- After step k there are no more white nodes in S_u.

- In the first step $u_0 - u_1$ nodes are colored (grey or black). Each vertex gets a charge of at most $2/(u_0 - u_1)$.

- After the first step, node u becomes eligible to be colored (as part of a pair with one of the grey nodes in S_u). If u is not chosen in step i (with a potential to paint u_i nodes grey), then we have found a better (pair of) node. That is, the charge to any of the new grey nodes in step i in S_u is at most $2/u_i$.
Adding up the charges in S_u

\[
C \leq \frac{2}{u_0 - u_1}(u_0 - u_1) + \sum_{i=1}^{k-1} \frac{2}{u_i}(u_i - u_{i+1})
\]

\[
= 2 + 2 \sum_{i=1}^{k-1} \frac{u_i - u_{i+1}}{u_i}
\]

\[
\leq 2 + 2 \sum_{i=1}^{k-1} H(u_i) - H(u_{i+1})
\]

\[
= 2 + 2(H(u_1) - H(u_k)) = 2(1 + H(u_1)) = 2(1 + H(\Delta))
\]
Discussion of the tree growing algorithm

• We have an extremely simple algorithm that is asymptotically optimal unless P=NP. And even the constants are small.

• Are we happy?

• Not really. How do we implement this algorithm in a real mobile network? How do we figure out where the best grey/white pair of nodes is? How slow is this algorithm in a distributed setting?

• We need a fully distributed algorithm. Nodes should only consider local information.
The Marking Algorithm

- Idea: The connected dominating set CDS consists of the nodes that have two neighbors that are not neighboring.

1. Each node u compiles the set of neighbors $N(u)$
2. Each node u transmits $N(u)$, and receives $N(v)$ from all its neighbors
3. If node u has two neighbors v, w and w is not in $N(v)$ (and since the graph is undirected v is not in $N(w)$), then u marks itself being in the set CDS.

+ Completely local; only exchange $N(u)$ with all neighbors
+ Each node sends only 1 message, and receives at most Δ
+ Messages have size $O(\Delta)$

- Is the marking algorithm really producing a connected dominating set? How good is the set?
Example for the Marking Algorithm

[J. Wu]
Correctness of Marking Algorithm

• We assume that the input graph G is connected but not complete.

• Note: If G was complete then constructing a CDS would not make sense. Note that in a complete graph, no node would be marked.

• We show:

The set of marked nodes CDS is
a) a dominating set
b) connected
c) a shortest path in G between two nodes of the CDS is in CDS
Proof of a) dominating set

- **Proof:** Assume for the sake of contradiction that node u is a node that is not in the dominating set, and also not dominated. Since no neighbor of u is in the dominating set, the nodes $N^+(u) := u \cup N(u)$ form:

 - a complete graph
 - if there are two nodes in $N(u)$ that are not connected, u must be in the dominating set by definition
 - no node $v \in N(u)$ has a neighbor outside $N(u)$
 - or, also by definition, the node v is in the dominating set

- Since the graph G is connected it only consists of the complete graph $N^+(u)$. We precluded this in the assumptions, therefore we have a contradiction
Proof of b) connected, c) shortest path in CDS

• Proof: Let p be any shortest path between the two nodes u and v, with $u, v \in \text{CDS}$.

• Assume for the sake of contradiction that there is a node w on this shortest path that is not in the connected dominating set.

• Then the two neighbors of w must be connected, which gives us a shorter path. This is a contradiction.
Improving the Marker Algorithm

• We give each node \(u \) a unique \(\text{id}(u) \).

• Rule 1: If \(N^+(v) \subseteq N^+(u) \) and \(\text{id}(v) < \text{id}(u) \), then do not include node \(v \) into the CDS.

• Rule 2: Let \(u, w \in N(v) \). If \(N(v) \subseteq N(u) \cup N(w) \) and \(\text{id}(v) < \text{id}(u) \) and \(\text{id}(v) < \text{id}(w) \), then do not include \(v \) into the CDS.

• (Rule 2+: You can do the same with more than 2 covering neighbors, but it gets a little more intricate.)

• …for a quiet minute: Why are the identifiers necessary?
Example for improved Marking Algorithm

- Node 17 is removed with rule 1
- Node 8 is removed with rule 2
Quality of the Marking Algorithm

- Given an Euclidean chain of n homogeneous nodes
- The transmission range of each node is such that it is connected to the k left and right neighbors, the id’s of the nodes are ascending.

- An optimal algorithm (and also the tree growing algorithm) puts every k’th node into the CDS. Thus $|\text{CDS}_{\text{OPT}}| \approx n/k$; with $k = n/c$ for some positive constant c we have $|\text{CDS}_{\text{OPT}}| = O(1)$.

- The marking algorithm (also the improved version) does mark all the nodes (except the k leftmost ones). Thus $|\text{CDS}_{\text{Marking}}| = n - k$; with $k = n/c$ we have $|\text{CDS}_{\text{Marking}}| = O(n)$.

- The worst-case quality of the marking algorithm is worst-case! 😊
The k-local Algorithm

Input: Local Graph

Fractional Dominating Set

Phase A: Distributed linear program
rel. high degree gives high value

Phase B: Probabilistic algorithm

Phase C: Connect DS by “tree” of “bridges”
Result of the k-local Algorithm

- Distributed Approximation

\[\text{Theorem: } E[|DS|] \leq O(\alpha \ln \Delta \cdot |DS_{\text{OPT}}|) \]

- The value of \(\alpha \) depends on the number of rounds \(k \) (the locality)

\[\alpha \leq \sqrt{k} \cdot (\Delta + 1)^{2/\sqrt{k}} \]

- The analysis is rather intricate… 😊
Unit Disk Graph

- We are given a set V of nodes in the plane (points with coordinates).
- The unit disk graph $UDG(V)$ is defined as an undirected graph (with E being a set of undirected edges). There is an edge between two nodes u, v iff the Euclidian distance between u and v is at most 1.
- Think of the unit distance as the maximum transmission range.
- We assume that the unit disk graph UDG is connected (that is, there is a path between each pair of nodes)
- The unit disk graph has many edges.
- Can we drop some edges in the UDG to reduced complexity and interference?
The “Dominator!” Algorithm

• For the important special case of Euclidean Unit Disk Graphs there is a simple marking algorithm that does the job.

• We make the simplifying assumptions that MAC layer issues are resolved: Two nodes \(u, v \) within transmission range 1 receive both all their transmissions. There is no interference, that is, the transmissions are locally always completely ordered.

• Initially no node is in the connected dominating set CDS.
 1. If a node \(u \) has not yet received an “I AM A DOMINATOR, BABY!” message from any other node, node \(u \) will transmit “I AM A DOMINATOR, BABY!”
 2. If node \(v \) receives a message “I AM A DOMINATOR, BABY!” from node \(u \), then node \(v \) is dominated by node \(v \).
• This gives a dominating set. But it is not connected.
The “Dominator!” Algorithm Continued

3. If a node \(w \) is dominated by more than two dominators \(u \) and \(v \), and node \(w \) has not yet received a message “I am dominated by \(u \) and \(v \)”, then node \(w \) transmits “I am dominated by \(u \) and \(v \)” and enters the CDS.

- And since this is still not quite enough…

4. If a neighboring pair of nodes \(w_1 \) and \(w_2 \) is dominated by dominators \(u \) and \(v \), respectively, and have not yet received a message “I am dominated by \(u \) and \(v \)”, or “We are dominated by \(u \) and \(v \)”, then nodes \(w_1 \) and \(w_2 \) both transmit “We are dominated by \(u \) and \(v \)” and enter the CDS.
Results

- The “Dominator!” Algorithm produces a connected dominating set.
- The algorithm is completely local
- Each node only has to transmit one or two messages of constant size.
- The connected dominating set is asymptotically optimal, that is, $|CDS| = O(|CDS_{OPT}|)$
- If nodes in the CDS calculate the Gabriel Graph GG(UDG(CDS)), the CDS graph is also planar
- The routes in GG(UDG(CDS)) are “competitive”.
- But: is the UDG Euclidean assumption realistic?
Overview of (C)DS Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst-Case Guarantees</th>
<th>Local (Distributed)</th>
<th>General Graphs</th>
<th>CDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greedy</td>
<td>Yes, optimal unless P=NP</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Tree Growing</td>
<td>Yes, optimal unless P=NP</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Marking</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>k-local</td>
<td>Yes, but with add. factor α</td>
<td>Yes (k-local)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>“Dominator!”</td>
<td>Asymptotically Optimal</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>