

Organisationseinheit verbal optional auf 2 Zeilen

Introduction: Image Compression Usage: image storage and transmission

8.9M

From https://helpx.adobe.com/au/lightroom-classic/lightroom-key-concepts/compression.html

68.34K

From https://helpx.adobe.com/au/lightroom-classic/lightroom-key-concepts/compression.html

Three main indicators: Rate, distortion, and realism

Guess and discuss

original From Iwai et al. [*thisp]

Which two are of the same bit rate? Which one maintains the most details?

Bit-rate: BPP(bits per pixel)

original

From Iwai et al. [*thisp]

Bit-rate

origin

From Iwai et al. [*thisp]

high rate

Measurements of Distortion

$$MSE(f,g) := \frac{1}{|V|} \int_{V} |f(x) - g(x)|$$
$$PSNR(f,g) := 10 \log_{10} \left(\frac{m^2}{MSE(f,g)}\right)$$

V: a rectangular region of the imagef, g: imagesm: the maximum possible pixel value of the image

From Becker Axel [*measure]

 $|x|^2 dx$ (Mean Squared Error),

(Peak Signal to Noise Ratio)

Distortion

lower distortion = closer to the original image

$\mathbf{PSNR} = 40 \ \mathbf{dB} \qquad \mathbf{PSNR} = 30 \ \mathbf{dB}$

From https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELDHUIZEN/node18.html

$\mathbf{PSNR} = 20 \ \mathbf{dB}$

Realism *≠* **distortion**

GT

JPEG-compressed

From Wang, et a. [*sameMSE]

Contrast-stretched

Mean-shifted

Salt-pepper noise

Blurred

Measurements of Realism

- 1. FID
- 2. LPIPS
- Both use deep convolutional networks.

Realism

low FID

~ high realism

From Fan et al. [*realism]

high realism

low realism

High Realism itself makes no sense

original

reconstructed

We want low bit rate, low distortion, and high realism! However, these three indicators cannot be achieved

simultaneously!

Rate-distortion-realism Tradeoff (Curves on the blackboard)

From Yochai Blau and Tomer Michaeli [*tradeoff]

- Fix rate R
- Fix distortion D
- Fix FID's upper bound P

Tradeoff: takeaway messages

- At low bit rates, the tradeoff becomes stronger.
- To optimize one metric, the other two need to be sacrificed.

From Yochai Blau and Tomer Michaeli [*tradeoff]

A Classic Compression Pipeline: Single-rate, no realism control

Single-rate v.s. Variable-rate

Loss function

Previous Work

- Learning based:
 - Generative:
 - GAN-based: Multi-realism, HiFiC, PQMIM
 - Diffusion-based: HFD, DIRAC
 - Non-Generative: ELIC, Charm, IVR, Hyperprior
- Non-Learning based: VTM, JPEG

"Green": able to adjust Distortion-realism tradeoff in one model

GAN Based Training

Motivation: how to adjust the balance between rate, distortion, and realism within a single model?

This Paper: Pipeline (See Blackboard)

beta: realism weight (higher beta means higher realism and higher distortion, vice versa)

This Paper: Loss function

$$\begin{split} \mathcal{L}_{1st} &= \lambda_R^{(q)} R(\hat{\boldsymbol{y}}_q) + \lambda_d d(\boldsymbol{x}, \hat{\boldsymbol{x}}_q) + \mathcal{L}_P(\boldsymbol{x}, \hat{\boldsymbol{x}}_q) \\ & \text{bit rate,} \qquad \text{MSE,} \qquad \text{LPIPS} \end{split}$$

$\mathcal{L}_{2nd} = \lambda_R^{(q)} R(\hat{\boldsymbol{y}}_q) + \lambda_d d(\boldsymbol{x}, \hat{\boldsymbol{x}}_q) + \beta(\lambda_P \mathcal{L}_P(\boldsymbol{x}, \hat{\boldsymbol{x}}_q) + \lambda_{\text{adv}} \mathcal{L}_{\text{HRRGAN}}^G)$ bit rate, MSE, LPIPS, adversarial loss

To control the rate: Insert Interpolation Channel Attention Layers

This page till the end: from Iwai et al. [*thisp]

Discriminator - RaGAN Relativistic Average GAN

$$p_r(x_r, x_f) = \sigma(D(x_r) - \mathbb{E}_{x_f}[D(x_f)])$$
$$p_f(x_r, x_f) = \sigma(D(x_f) - \mathbb{E}_{x_r}[D(x_r)])$$
$$\mathcal{L}_{\text{RaGAN}}^G = -\log p_f(x_r, x_f) - \log(1 - p_r(x_r, x_f))$$
$$\mathcal{L}_{\text{RaGAN}}^D = -\log p_r(x_r, x_f) - \log(1 - p_f(x_r, x_f)),$$

not aligned

Average

Discriminator - RGAN Relativistic GAN

$$\mathcal{L}_{\text{RGAN}}^{G} = -\log \mathcal{L}_{\text{RGAN}}^{D} = -\log \mathcal{L}_{\text{RGAN}}^{D}$$

aligned

 $\log \sigma(D(x_f) - D(x_r))$ $g \sigma(D(x_r) - D(x_f)).$

Discriminator - HRRGAN Higher Rate Relativistic GAN

To avoid over-penalty on realism

 $\mathcal{L}_{\text{HRRGAN}}^{G} = -\log \sigma (D(\hat{\boldsymbol{x}}_{q}) - \text{sg}(D(\hat{\boldsymbol{x}}_{q+1})))$ $\mathcal{L}_{\text{HRRGAN}}^{D} = -\log \sigma (D(\boldsymbol{x}) - D(\hat{\boldsymbol{x}}_{q})),$

sg: stop gradient operation

Independent vs Shared Discriminator

Hybrid Discriminator

backbone: extract and encode features

head: produce prediction

Experimental Results: Compare with Generative Models

Original

(bpp, PSNR)

```
Ours: Low-rate, Low-distortion
(q=0,\beta=0)
```

0.308bpp, 23.1dB

Ours: Low-rate, High-realism $(q = 0, \beta = 3.84)$

HiFiC (single-rate)

0.311bpp, 20.6dB

0.308bpp, 22.7dB

Ours: High-rate, Low-distortion $(q = 4, \beta = 0)$

2.24bpp, 34.5dB

better texture! Comparable realism with lower bit rate!

Quantitative Evaluation

bpp(bit rate)

bpp(bit rate)

Quantitative Evaluation

- Perform fine rate-tuning
- high realism model: surpassed DIRAC on both indicators

Results of Different Discriminator designs

- \bullet
- Quality-level specific layers are beneficial

Hybrid discriminators outperformed shared discriminators in FID

Effect of HRRGAN

Average calculation harms performance

Trained with fixed beta = 2.56 RGAN: Relativistic GAN SGAN: Standard GAN RaGAN: Relativistic Average GAN

HRRGAN: Higher Rate Relativistic GAN

Limitation

 Control the rate and realism uniformly cannot perform precise (e.g. pixel-level) control

References

[*multi-real] Agustsson, Eirikur, et al. "Multi-realism image compression with a conditional generator." *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition. 2023. [*hyperprior] Ballé, Johannes, et al. "Variational image compression with a scale hyperprior." arXiv preprint arXiv:1802.01436 (2018). [*measure] Becker Axel. "A review on image distortion measures." (2000). [*realism] Fan, Shaojing, et al. "Image visual realism: From human perception to machine computation." *IEEE transactions on pattern* analysis and machine intelligence 40.9 (2017): 2180-2193.

[*thisp] Iwai Shoma, Tomo Miyazaki, and Shinichiro Omachi. "Controlling Rate, Distortion, and Realism: Towards a Single Comprehensive Neural Image Compression Model." *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*. 2024.

[*diffPSNR] Loukil Habiba, Moez Hadj Kacem, and Mohamed Salim Bouhlel. "A new image quality metric using system visual human characteristics." International Journal of Computer Applications 60.6 (2012). [*sameMSE] Wang, Zhou, et al. "Image quality assessment: from error visibility to structural similarity." *IEEE transactions on image*

processing 13.4 (2004): 600-612.

[*tradeoff] Yochai Blau and Tomer Michaeli. Rethinking lossy compression: The rate-distortion-perception tradeoff. In *Proceedings* of the 36th International Conference on Machine Learning(ICML), 2019.

