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Motivation for sequence modeling

What is a sequence?

Example of a sequence: Text

Example of a sequence task: Translation
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x0 x1 x2 x3 ... xt xt+1 xt+2 xt+3 

The student is late again 

The student is late again 

Der Schüler ist wieder zu spät



Motivation for sequences

• Videos are sequences of 
images

• Tasks on videos:
- Video generation
- Video captioning
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Motivation for sequence modeling

• Audio: speech processing and generation

• Genomics: process DNA sequences

• Time series: process data from sensors
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Types of sequence tasks
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e.g. Sentiment classification e.g. Image captioning

e.g. Video captioninge.g. Annotate video frames



Related Work
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RNN

• O(n) 

• Suffers from vanishing/exploding 
gradients

19.03.2024Source: https://www.sciencedirect.com/science/article/pii/S0065245819300506 7



LSTM

• Keeps a long term state

• Employs gating mechanisms that allows to 
selectively memorize and forget information

19.03.2024Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 8



Transformer – self attention

19.03.2024Source: https://deepgram.com/learn/visualizing-and-explaining-transformer-models-from-the-ground-up 9

O(n2) due to self attention



Transformer – self attention

19.03.2024Source: Longformer: The Long-Document Transformer, by Iz Beltagy, Matthew E. Peters, Arman Cohan 10



Transformer: Limitations for sequences larger than the context window

The quick brown

The quick brown fox jumps over the lazy dog
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State space models (SSM)
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Input: 
Output: 

Hidden: 

Continuous time-variant SSM:

Continuous time-invariant SSM:

How to model discrete inputs like text?

Source: Mamba: Linear-Time Sequence Modeling with Selective State Spaces, by Albert Gu, Tri Dao



Discretized state space model

Introduced time step 
Discretized A and B: 

Discretized SSM: 
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• O(n)
• Time invariant
• Well suited for continuous tasks, like audio
• Not well suited for discrete tasks like text

Source: Mamba: Linear-Time Sequence Modeling with Selective State Spaces, by Albert Gu, Tri Dao



Mamba
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Goals

1. Build on SSMs to have linear time complexity, while

2. Matching the accuracy of transformers
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Selective state space modeling

• Selectivity:
- Select which inputs contribute to the hidden state
- Not possible with time invariant models

• Property of discretized SSMs:
- Parameter ∆
-  ∆ -> inf hidden state is reset and only current input is considered
-  ∆ -> 0 hidden state is kept and current input is ignored

• Difference to previous SSMs: 
- ∆, B, C are input dependent
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Selective SSM block

Equation of the selective SSM:, , 

19.03.2024Source: Mamba: Linear-Time Sequence Modeling with Selective State Spaces, by Albert Gu, Tri Dao 17



Mamba block

19.03.2024Source: Mamba: Linear-Time Sequence Modeling with Selective State Spaces, by Albert Gu, Tri Dao 18

The selective SSM is now used in the Mamba block



Synthetic Benchmarks
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Synthetic Benchmarks

Selective copying: Induction heads:

19.03.2024Source: Mamba: Linear-Time Sequence Modeling with Selective State Spaces, by Albert Gu, Tri Dao 20



19.03.2024Source: Mamba: Linear-Time Sequence Modeling with Selective State Spaces, by Albert Gu, Tri Dao 21



Language Modeling – Scaling laws

19.03.2024Source: Mamba: Linear-Time Sequence Modeling with Selective State Spaces, by Albert Gu, Tri Dao 22



Speed
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DNA Modeling
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DNA Modeling – Scaling laws

19.03.2024Source: Mamba: Linear-Time Sequence Modeling with Selective State Spaces, by Albert Gu, Tri Dao 25



Audio Generation

19.03.2024Source: Mamba: Linear-Time Sequence Modeling with Selective State Spaces, by Albert Gu, Tri Dao 26

Performance on SC09, a speech generation benchmark



Performance Summary

• Excellent performance on synthetic benchmarks

• Matches the performance of transformers in language tasks

• Shows promising scaling laws across all domains
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Discussion
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Discussion

• Strengths:
- Demonstrates great speed on long sequences
- Matches Transformer accuracy
- Scaling laws look promising

• Weaknesses:
- empirically evaluated up to 2.4B parameters
- scaling not yet empirically evaluated for larger sizes

19.03.2024 29



Discussion - ICLR rejection

• “Absence of Results on LRA (Long Range Arena)”

• “Evaluation using perplexity: The reviewer questioned the reliance on perplexity as the major metric for 
evaluation. ”

19.03.2024 30Source: https://openreview.net/forum?id=AL1fq05o7H



Thank you!
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Speedup due to hardware optimization

19.03.2024Source: Mamba: Linear-Time Sequence Modeling with Selective State Spaces, by Albert Gu, Tri Dao 32



Discretized state space model - extra

Introduced time step 
Discretized A and B: 

Discretized SSM: 

Concrete discretization rule: 

 

19.03.2024 33Source: Mamba: Linear-Time Sequence Modeling with Selective State Spaces, by Albert Gu, Tri Dao



Selective SSM algorithm

19.03.2024Source: Mamba: Linear-Time Sequence Modeling with Selective State Spaces, by Albert Gu, Tri Dao 34
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