

Agree to Disagree: Diversity through Disagreement for Better Transferability Guiv Farmanfarmaian

Guiv Farmanfarmaian Mentor: Frédéric Berdoz Seminar in Deep Neural Networks 19.03.2024, ETH Zurich

Motivation – Shortcomings of DNN

• Out of Distribution (OOD) setting : training and test data differ

DNN fooled

From Beery et al. [2]

Motivation – Spurious vs Transferable Features



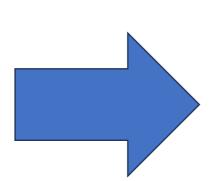
 Spurious Features

 (Correlation without Causation): Grass, mountains

• Transferable Features (Causation): Eyes, Ears, Body

From Beery et al. [2]

Shortcut Learning – Simplicity Bias



Learns Colors not Shape

Motivation - Objectives

Main Objectives

Avoid Shortcut Learning Generalize to OOD Distributions

Improve Uncertainty Estimation

Previous Work - Ensembles

- Solutions to increase **diversity** of ensemble:
 - 1. Train on different subsets of dataset
 - 2. Add orthogonality constraints on predictor's gradient

Previous Work – OOD Generalization

Methods to Increase Generalization

Robust Learning

- Set of plausible test distributions U
- Minimize over worst distribution in U

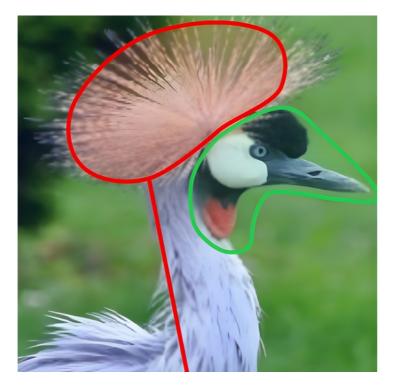
Invariant Learning

Define a set of
 <u>Environments</u>

Output Indistinguishable
 among them

Previous Work – Weakness of Invariant Learning

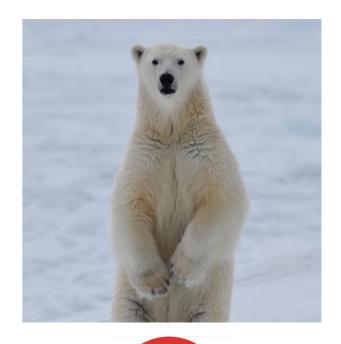
Invariance # Correctness



From Pagliardini et al. [1]

Previous Work – OOD generalization





X

Spurious Feature (i.e. Color) fully predictive

Previous work – Uncertainty Estimation

- Monte-Carlo Dropout, Bayesian Neural Networks, etc. improve uncertainty estimation
- Problem: Fail on OOD samples <u>away from decision boundary</u>

Previous work – Seminal Work (1)

Simplicity Bias

Teney et al. (2021)

Gradient orthogonality constraints at an intermediary level

 Problem: Reliance on <u>pre-trained</u> <u>encoder</u>; Large # of models needed

Previous work – Seminal Work (2)

OOD generalization

Lee et al. (2022)

Use mutual information

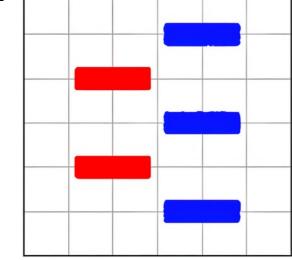
• Problem: don't investigate uncertainty estimation; MI on entire dataset is <u>costly</u>

Agree to Disagree – Diversity-BydisAgreement Training (D-BAT)

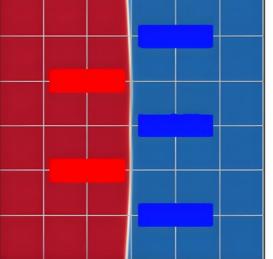
Core Idea

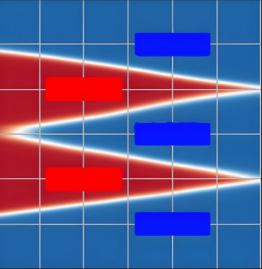
"Diverse hypotheses should agree on the source distribution D while disagreeing on the OOD distribution D_{ood}"

D-BAT Intuition – Maximize Disagreement on White Space



Training Data





Model 2

Ensemble

Code from Pagliardini et al. [1]

D-BAT - Metrics

 $\begin{array}{ll} \mathcal{X} \text{ input space} & h: \mathcal{X} \to \mathcal{Y} \text{ labelling function} \\ \mathcal{Y} \text{ output space} & (\mathcal{D}, h) \text{ domain} \\ \mathcal{D} \text{ distribution over } \mathcal{X} & L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+ \text{ loss function} \end{array}$

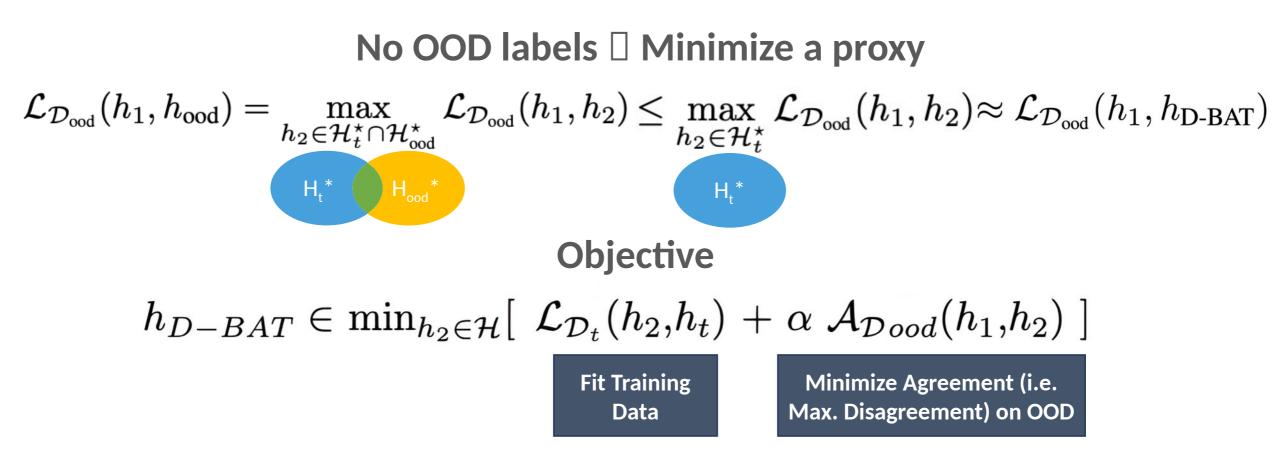
Expected Loss

$$\mathcal{L}_{\mathcal{D}}(h_1, h_2) = \mathbb{E}_{x \sim \mathcal{D}} \left[L(h_1(x), h_2(x)) \right]$$

D-BAT – OOD Generalization

 (\mathcal{D}_t, h_t) training domain $(\mathcal{D}_{ood}, h_{ood})$ unlabelled OOD domain $\begin{aligned} \mathcal{H} \text{ set of all labelling functions} \\ \mathcal{H}_t^* &:= argmin_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}_t}(h, h_t) \\ \mathcal{H}_{ood}^* &:= argmin_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}_{ood}}(h, h_{ood}) \end{aligned}$

Key Assumption $\mathcal{H}^*_t \cap \mathcal{H}^*_{ood} \neq \emptyset$

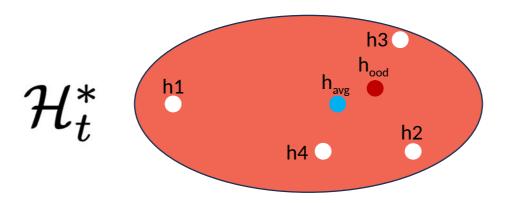


D-BAT Algorithm for 2 predictors

- 1. Train h1 by minimizing the training data loss
- 2. Train h2 by also considering the **agreement with h1** on the OOD data

$$h_2^{\star} \in \operatorname*{argmin}_{h_2 \in \mathcal{H}} rac{1}{N} \Big(\sum_{(oldsymbol{x},y) \in \hat{\mathcal{D}}} \mathcal{L}(h_2(oldsymbol{x}),y) + lpha \sum_{ ildsymbol{ ilde{x}} \in \hat{\mathcal{D}}_{ ext{ood}}} \mathcal{A}_{ ilde{oldsymbol{x}}}(h_1,h_2) \Big)$$

D-BAT – Ensemble of predictors

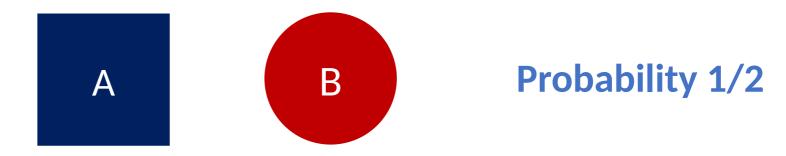


Inspired by Pagliardini et al. [1]

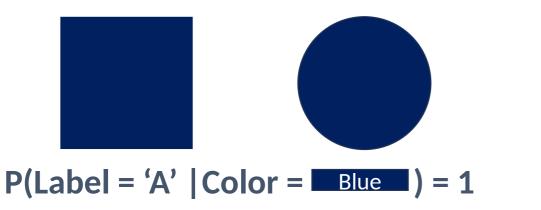
D-BAT Theorem: Assumptions Color, Shape and Label Combinations Training Data D B A **Probability 1/2 Uniform OOD Distribution D**_{ood} В A Β A **Probability 1/8** A A B B

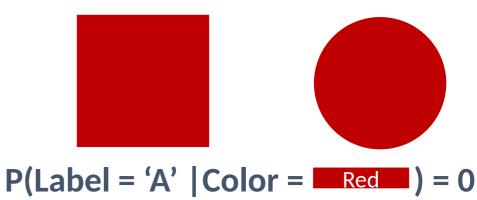
D-BAT Theorem: Assumptions

Training Data D



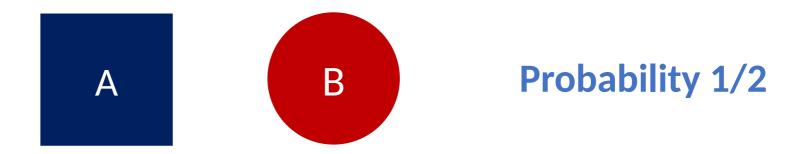
Model 1: Learns Colors to Predict Labels





D-BAT Theorem: Predict Labels

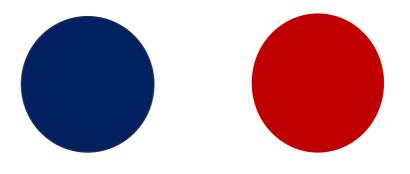
Training Data D



Model Ntddearns Colored Nodel Nodel



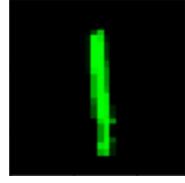
P(Label = 'A' | Shape = _) = 1

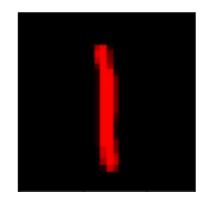


P(Label = 'A' | Shape = •) = 0

Assumptions for D-BAT

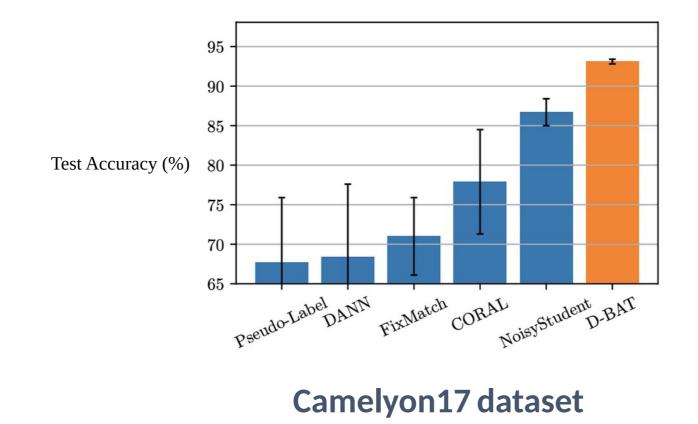
- Existence of a transferable function: $h^* \in \mathcal{H}_t^* \cap \mathcal{H}_{ood}^*$
- Counterfactual correlations essential for OOD distribution



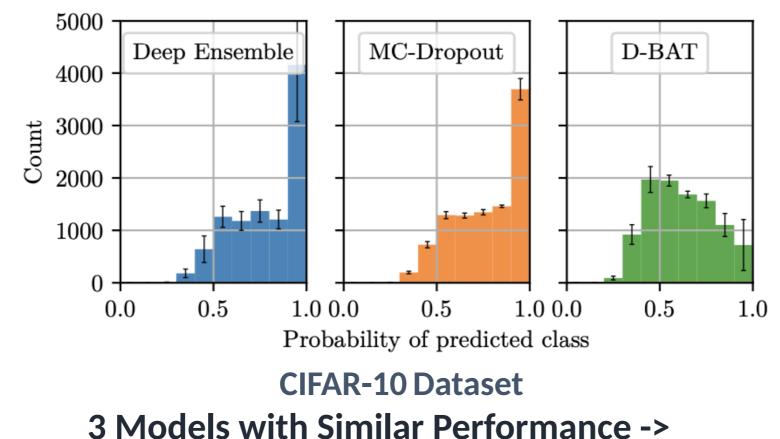


OOD data Colored MNIST Dataset

Experimental Results: Performance Comparison



Experimental Results - Uncertainty Estimation



D-BAT Better at Uncertainty Estimation on OOD samples

From Pagliardini et al. [1]

Experimental Results - Key Takeaways

D-BAT Achievements

Better Generalization:

On Natural Domains
With Ensemble
When OOD test data (i.e. new domains) Improves Uncertainty Estimation

Personal Opinion

- Approach beautifully self-evident
- Training ensemble of models computationally expensive
- No control over OOD distribution -> hard to know whether features have counterfactual correlations

Questions / Your Opinions

Sources

[1]: Pagliardini, M., Jaggi, M., Fleuret, F., and Karimireddy, S. P. Agree to disagree: Diversity through disagreement for better transferability. arXiv preprint arXiv:2202.04414, 2022.

[2]: Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In ECCV (16), volume 11220 of *Lecture Notes in Computer Science*, pp. 472–489. Springer, 2018.

[3]: Leo Breiman. Bagging predictors. *Mach. Learn.*, 24(2):123–140, 1996.

[4]: Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In ECCV (16), volume 11220 of *Lecture Notes in Computer Science*, pp. 472–489. Springer, 2018.

[5] : Joost van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using a single deep deterministic neural network. In ICML, volume 119 of *Proceedings of Machine Learning Research*, pp. 9690–9700. PMLR, 2020.

[6] : Yehao Liu, Matteo Pagliardini, Tatjana Chavdarova, and Sebastian U. Stich. The peril of popular deep learning uncertainty estimation methods. 2021b.

[7]: Damien Teney, Ehsan Abbasnejad, Simon Lucey, and Anton van den Hengel. Evading the simplicity bias: Training a diverse set of models discovers solutions with superior OOD generalization. *CoRR*, abs/2105.05612, 2021.

[8]: Yoonho Lee, Huaxiu Yao, and Chelsea Finn. Diversify and disambiguate: Learning from underspecified data. *CoRR*, abs/2202.03418, 2022.

Appendix: Experimental Results – Artificial Datasets

	Single Model			
Dataset \mathcal{D}	ERM	D-BAT		
C-MNIST	12.3 ± 0.7	90.2 ± 3.7		
M/F-D	52.9 ± 0.1	94.8 ± 0.3		
M/C-D	50.0 ± 0.0	$\textbf{73.3} \pm \textbf{1.2}$		

Case where OOD data = test data

Appendix: Experimental Results – Natural Datasets (1)

	Single Model		Ensemble	
Dataset \mathcal{D}	ERM	D-BAT	ERM	D-BAT
Office-Home	86.0 ± 0.5 50.4 ± 1.0 80.3 ± 0.4	51.1 ± 0.7	52.0 ± 0.5	52.7 ± 0.2

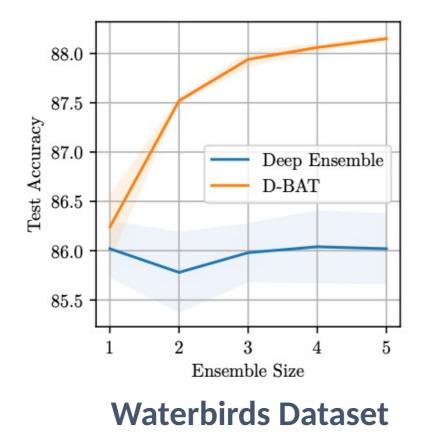
Case where OOD data = test data

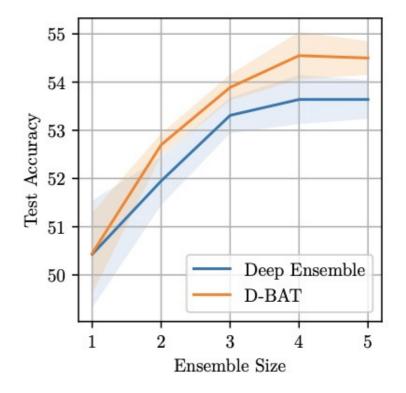
Appendix: Experimental Results – Natural Datasets (2)

	$\mathcal{D}_{ood} \neq test data$				
	Single Model		Ensemble		
	ERM	D-BAT	ERM	D-BAT	
Office-Home Camelyon17		$51.7 \pm 0.3 \\ 88.8 \pm 1.4$			

Case where OOD data \neq test data

Appendix: Experimental Results – Ensemble on Natural Datasets

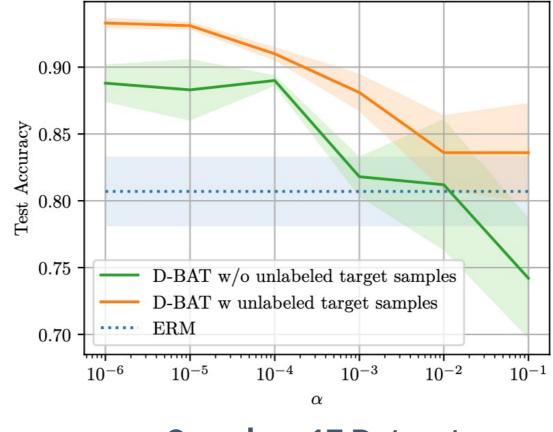




Office-Home Dataset

From Pagliardini et al. [1]

Appendix: Choice of the Hyperparameter α



Camelyon17 Dataset

From Pagliardini et al. [1]