EHHzürich

Maximally Expressive GNNs for Outerplanar Graphs

Guidobene Davide

Seminar in Deep Neural Networks (FS 2024)
12 March 2024, Zurich

GNNs

MPNN: $u_{1+1} \Phi\left(u_{1}, \Psi\left(\operatorname{Nei}_{,}(u)\right)\right)$
Graph Neural Network's goal would be to only consider the isomorphism class of a graph (i.e. 2 isomorphic graphs should give the same output).

1-WL Test

$$
\mathrm{u}_{\mathrm{t}+1} \leftarrow\left(\mathrm{u}_{\mathrm{t}}, \operatorname{Nei} \mathrm{i}_{\mathrm{t}}(\mathrm{u})\right)
$$

1-WL Test

1-WL Test

1-WL Test

1-WL Test

If $\mathrm{WL}(\mathrm{G}) \neq \mathrm{WL}(\mathrm{H})$, then G and H are not isomorphic However, if $\mathrm{WL}(\mathrm{G})=\mathrm{WL}(\mathrm{H}), \mathrm{G}$ and H might not be isomorphic

$\{4$ blue, 2 red $\}=\{4$ blue, 2 red $\}$

GNNs

Problem: MPNN's expressiveness is bounded by the 1-WL test. In particular, GINs (Graph Isomorphism Networks) are proven to be as expressive as the 1-WL test.

GNNs

Can we restrict ourselves to a simpler subclass of graphs?

Planar graphs

Can be drawn on the plane in such a way that no edges cross each other

Non-planar

Outerplanar graphs

Planar graph that can be drawn so that no vertex is "trapped" inside the edges of the graph

Outerplanar

Non-outerplanar

Biconnected graph

Connected graph that is not broken into disconnected pieces by deleting any single vertex

Biconnected

Non-biconnected

Biconnected graph

Connected graph that is not broken into disconnected pieces by deleting any single vertex

Biconnected

Non-biconnected

Hamiltonian cycle

Cycle which goes over each node exactly once

Hamiltonian cycle

Cycle which goes over each node exactly once
Theorem 1: Biconnected outerplanar graphs have a unique Hamiltonian cycle that can be found in linear time

Hamiltonian cycle (2 directed variants)

HALs (Hamiltonian Adjacency Lists)

Annotating each node with the sorted distances d_{c} to all its neighbors on the two directed variants of the Hamiltonian cycle C .

$$
d_{c}(e, d)=1
$$

HALs (Hamiltonian Adjacency Lists)

Annotating each node with the sorted distances d_{c} to all its neighbors on the two directed variants of the Hamiltonian cycle C .

$$
d_{c}(e, a)=4
$$

HALs (Hamiltonian Adjacency Lists)

Annotating each node with the sorted distances d_{c} to all its neighbors on the two directed variants of the Hamiltonian cycle C .

$$
\begin{aligned}
& d_{c}(a, e)=1 \\
& d_{c}(a, b)=4
\end{aligned}
$$

HALs (Hamiltonian Adjacency Lists)

Annotating each node with the sorted distances d_{c} to all its neighbors on the two directed variants of the Hamiltonian cycle C .

$$
d_{c}(a, d)=2
$$

HALs (Hamiltonian Adjacency Lists)

Annotating each node with the sorted distances d_{c} to all its neighbors on the two directed variants of the Hamiltonian cycle C.

Theorem 2: Two biconnected outerplanar graphs G and H with HAL and reverse sequences S_{G}, S_{H} and R_{G}, R_{H} are isomorphic, iff S_{G} is a cyclic shift of S_{H} or R_{H}.

Idea

Let's build a transformation to make S_{G} and R_{G} recognizable by WL test

Agenda

1. Find transformation CAT* that guarantees maximal expressiveness for biconnected outerplanar graphs
2. Extend CAT* to build transformation CAT that covers all outerplanar graphs
3. Use CAT to boost expressiveness of GNNs

CAT*

Transformation of a biconnected outerplanar graph

CAT*

1. Find directed Hamiltonian cycle C

ETHzürich

CAT*

3. Add edges not in the Hamiltonian cycle in both directions

CAT*

4. Label the new edges (u, v) with their distance $d_{c}(v, u)$ according to HAL

CAT*

4. Label the new edges (u, v) with their distance $d_{c}(v, u)$ according to HAL

CAT*

2. Give on the directed Hamiltonian cycle C all the edges weight 1

ETHzürich

CAT*

ETHzürich

CAT*

Repeat the whole procedure on the reverse hamiltonian cycle $\overleftarrow{\mathrm{C}}$

CAT*

The output of this transformation is 2 connected components

CAT*

Theorem 3: Two biconnected outerplanar graphs G and H are isomorphic, iff $\mathrm{WL}\left(\mathrm{CAT}^{*}(\mathrm{G})\right)=\mathrm{WL}\left(\mathrm{CAT}^{*}(\mathrm{H})\right)$

CAT*

Theorem 3: Two biconnected outerplanar graphs G and H are isomorphic, iff $\mathrm{WL}\left(\mathrm{CAT}^{*}(\mathrm{G})\right)=\mathrm{WL}\left(\mathrm{CAT}^{*}(\mathrm{H})\right)$

CAT*

Theorem 3: Two biconnected outerplanar graphs G and H are isomorphic, iff $\mathrm{WL}\left(\mathrm{CAT}^{*}(\mathrm{G})\right)=\mathrm{WL}\left(\mathrm{CAT}^{*}(\mathrm{H})\right)$

Next step:

Let's extend this to all outerplanar graphs.

Biconnected components and blocks
A biconnected component is a maximal biconnected subgraph (with at least 3 nodes)

Biconnected components and blocks

A biconnected component is a maximal biconnected subgraph (with at least 3 nodes)
A block is a biconnected outerplanar component

Biconnected components and blocks

A biconnected component is a maximal biconnected subgraph (with at least 3 nodes)
A block is a biconnected outerplanar component

Biconnected components and blocks

A biconnected component is a maximal biconnected subgraph (with at least 3 nodes)
A block is a biconnected outerplanar component

Biconnected components and blocks

A biconnected component is a maximal biconnected subgraph (with at least 3 nodes)
A block is a biconnected outerplanar component

Not maximal

CAT

Transformation of an outerplanar graph

CAT

1. Identify blocks

CAT

2. Let F be the graph induced by the edges that are in none of the blocks

CAT

2. Let F be the graph induced by the edges that are in none of the blocks

3. For all blocks B_{i}

CAT

3. Let's start with block B_{1}

CAT

3.1 Add the 2 connected components $\mathrm{B}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}^{\prime}$ from $\mathrm{CAT}^{*}\left(\mathrm{~B}_{\mathrm{i}}\right)$

CAT

3.4 For all pairs of nodes v, \overleftarrow{v} in $B_{i}^{\prime}, B_{i}^{\prime}$, add a node p_{v}

CAT

3.4 Add edges edges $\left\{p_{v}, v\right\},\left\{p_{v}, \overleftarrow{v}\right\}$

CAT

3.5 Add a node b_{i}

CAT

3.5 Add edges $\left\{\mathrm{b}_{\mathrm{i}}, \mathrm{p}_{\mathrm{v}}\right\}, \forall \mathrm{v} \in \mathrm{V}\left(\mathrm{B}_{\mathrm{i}}\right)$

CAT
 3.2 Let $A_{i}:=V\left(B_{i}\right) \cap V(F)$

CAT

3.6 Color in orange all green nodes in A

CAT

3.6 Connect every node from A to its water green counterpart

CAT

3. Repeat for every block B_{i}

CAT

4. Add a node g

CAT

4. Add edges $\left\{\mathrm{g}, \mathrm{b}_{\mathrm{i}}\right\}$ for all nodes b_{i}

CAT

Theorem 4: Outerplanar graphs G and H are isomorphic, iff $\mathrm{WL}(\mathrm{CAT}(\mathrm{G}))=$ WL(CAT(H))

CAT

Linear time complexity:

- Time complexity dominated by computation of blocks and their Hamiltonian cycles (both linear)
- We only add a linear number of nodes and edges. $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Experimental results

Table 4: Predictive performance of MPNNs with and without CAT on different molecular benchmark datasets. Arrows indicate whether smaller (\downarrow) or bigger (\uparrow) results are better. Bold entries are an MPNN with CAT that outperforms the same MPNN without CAT.

Dataset \rightarrow	ZINC	MOLHIV	MOLBACE	MOLBBBP	MOLSIDER
\downarrow Model	MAE \downarrow	ROC-AUC \uparrow	ROC-AUC \uparrow	ROC-AUC \uparrow	ROC-AUC \uparrow
GIN	0.168 ± 0.007	77.9 ± 1.0	74.6 ± 3.2	66.0 ± 2.1	56.6 ± 1.0
CAT+GIN	$\mathbf{0 . 1 0 1} \pm \mathbf{0 . 0 0 4}$	76.7 ± 1.8	$\mathbf{7 9 . 5} \pm \mathbf{2 . 5}$	$\mathbf{6 7 . 2} \pm \mathbf{1 . 8}$	$\mathbf{5 8 . 2} \pm \mathbf{0 . 9}$
GCN	0.184 ± 0.013	76.7 ± 1.4	77.9 ± 1.7	66.1 ± 2.4	56.7 ± 1.5
CAT+GCN	$\mathbf{0 . 1 2 3} \pm \mathbf{0 . 0 0 8}$	$\mathbf{7 7 . 1} \pm \mathbf{1 . 6}$	$\mathbf{7 9 . 2} \pm \mathbf{1 . 5}$	$\mathbf{6 8 . 3} \pm \mathbf{1 . 7}$	$\mathbf{5 7 . 9} \pm \mathbf{1 . 8}$
GAT	0.375 ± 0.013	76.6 ± 2.0	81.7 ± 2.3	66.2 ± 1.4	58.4 ± 1.0
CAT+GAT	$\mathbf{0 . 2 0 1} \pm \mathbf{0 . 0 2 2}$	75.3 ± 1.6	79.3 ± 1.6	66.0 ± 1.9	58.3 ± 1.3
Dataset \rightarrow	MOLESOL	MOLTOXCAST	MOLLIPO	MOLTOX21	
\downarrow Model	RMSE \downarrow	ROC-AUC \uparrow	RMSE \downarrow	ROC-AUC \uparrow	
GIN	1.105 ± 0.077	65.3 ± 0.6	0.717 ± 0.016	75.8 ± 0.7	
CAT+GIN	$\mathbf{0 . 9 8 5} \pm \mathbf{0 . 0 5 5}$	$\mathbf{6 5 . 6} \pm \mathbf{0 . 5}$	0.798 ± 0.031	74.8 ± 1.0	
GCN	1.053 ± 0.087	64.4 ± 0.4	0.748 ± 0.018	76.4 ± 0.3	
CAT+GCN	$\mathbf{1 . 0 0 6} \pm \mathbf{0 . 0 3 6}$	$\mathbf{6 6 . 2} \pm \mathbf{0 . 8}$	0.771 ± 0.023	74.9 ± 0.8	
GAT	1.037 ± 0.063	63.8 ± 0.8	0.728 ± 0.024	76.3 ± 0.6	
CAT+GAT	1.09 ± 0.048	$\mathbf{6 4 . 5} \pm \mathbf{0 . 8}$	0.754 ± 0.021	75.4 ± 0.7	

Strengths

- Better time complexity than other maximally expressive architecture for outerplanar graphs:
- 3-GNN (linear vs cubic)
- PlanE (linear vs quadratic)
- Very strong results in some datasets
- CAT can be applied to non-outerplanar graphs in linear time (without same guarantees)
- Recent work indicates CAT increases connectivity on the graph
- Most pharmaceutical molecules can be represented as outerplanar graphs.

Weaknesses

- Experimental results not consistent: sometimes is even outperformed by base model on G (especially common for GAT). Considerations:
- CAT transformation introduces new "virtual" nodes and edges, so we have:
- longer dependencies
- GNN has to learn different representation for "virtual" nodes and edges
- No SOTA models implemented
- Guarantees restricted to outerplanar graphs (not very impactful)
- Would be good to generalize it to planar graphs (isomorphism still verifiable in polynomial time) like PlanE.

QUESTIONS?

References

- Franka Bause, Fabian Jogl, Pascal Welke, \& Maximilian Thiessen (2023). Maximally Expressive GNNs for Outerplanar Graphs. In The Second Learning on Graphs Conference.
- Franka Bause, Fabian Jogl, Patrick Indri, Tamara Drucks, David Penz, Nils Morten Kriege, Thomas Gärtner, Pascal Welke, \& Maximilian Thiessen. (2024). Maximally Expressive GNNs for Outerplanar Graphs
- Xu, K., Hu, W., Leskovec, J., \& Jegelka, S. (2019). How Powerful are Graph Neural Networks? In International Conference on Learning Representations.
- Radoslav Dimitrov, Zeyang Zhao, Ralph Abboud, \& İsmail Ilkan Ceylan. (2023). PlanE: Representation Learning over Planar Graphs.
- Hopcroft John E. and Tarjan Robert Endre. 1972. Isomorphism of planar graphs. In Complexity of Computer Computations (The IBM Research Symposia Series). Plenum Press, New York, 131-152.
- Hopcroft John E. and Wong J. K.. 1974. Linear time algorithm for isomorphism of planar graphs (preliminary report). In 6th ACM Symposium on Theory of Computing (STOC). ACM Press, 172-184.
- Grötschla Florian
- https://www.wikipedia.org/
- https://csacademy.com/app/graph editor
- https://edgitor.chunlaw.io/

EHHzürich

Guidobene Davide
dguidobene@student.ethz.ch

Seminar in Deep Neural Networks (FS 2023)

