

Maximally Expressive GNNs for Outerplanar Graphs Guidobene Davide

Seminar in Deep Neural Networks (FS 2024) 12 March 2024, Zurich

GNNs

MPNN: $u_{l+1} \Phi(u_l, \Psi(Nei_l(u)))$ Graph Neural Network's goal would be to only consider the isomorphism class of a graph (i.e. 2 isomorphic graphs should give the same output).

 $u_{t+1} \leftarrow (u_t, Nei_t(u))$

1-WL Test If $WL(G) \neq WL(H)$, then G and H are not isomorphic However, if WL(G) = WL(H), G and H might not be isomorphic

 $\{4 \text{ blue}, 2 \text{ red}\} = \{4 \text{ blue}, 2 \text{ red}\}$

GNNs

Problem: MPNN's expressiveness is bounded by the 1-WL test. In particular, GINs (Graph Isomorphism Networks) are proven to be as expressive as the 1-WL test.

GNNs

Can we restrict ourselves to a simpler subclass of graphs?

Planar graphs Can be drawn on the plane in such a way that no edges cross each other

Non-planar

Planar

Outerplanar graphs

Planar graph that can be drawn so that no vertex is "trapped" inside the edges of the graph

Outerplanar

Non-outerplanar

Biconnected graph

Connected graph that is not broken into disconnected pieces by deleting any single vertex

Non-biconnected

Biconnected graph

Connected graph that is not broken into disconnected pieces by deleting any single vertex

Non-biconnected

Hamiltonian cycle

Cycle which goes over each node exactly once

Hamiltonian cycle

Cycle which goes over each node exactly once

Theorem 1: Biconnected outerplanar graphs have a unique Hamiltonian cycle that can be found in linear time

Hamiltonian cycle (2 directed variants)

Theorem 2: Two biconnected outerplanar graphs G and H with HAL and reverse sequences S_G, S_H and R_G, R_H are isomorphic, iff S_G is a cyclic shift of S_{μ} or R_{μ} . $S_{G}^{=}((1,4), (1,3,4), (1,4), (1,4), (1,2,4))$ $S_{H} = ((1,3,4), (1,4),$ 1,4 1,4 (1,4), (1,2,4), (1,4))а е R_G=((1,2,4), (1,4), R_H=((1,4), (1,2,4), (1,4), (1,3,4), (1,4)) (1,4), (1,4), (1,3,4))1,2,4 1,3,4 1,2,4 1,3,4 b а d е 1,4 1,4 1,4 1,4 d С b С

ETH zürich

S = (e, d, c, b, a), R = (a, b, c, d, e)

Idea

Let's build a transformation to make S_G and R_G recognizable by WL test

Agenda

- 1. Find transformation CAT* that guarantees maximal expressiveness for biconnected outerplanar graphs
- 2. Extend CAT* to build transformation CAT that covers all outerplanar graphs
- 3. Use CAT to boost expressiveness of GNNs

CAT* Transformation of a biconnected outerplanar graph

CAT* 1. Find directed Hamiltonian cycle C

CAT* 3. Add edges not in the Hamiltonian cycle in both directions

ETH zürich

а

CAT* 4. Label the new edges (u, v) with their distance $d_c(v, u)$ according to HAL

CAT* 4. Label the new edges (u, v) with their distance $d_c(v, u)$ according to HAL

CAT* 2. Give on the directed Hamiltonian cycle C all the edges weight 1

30

1

CAT*

CAT* Repeat the whole procedure on the reverse hamiltonian cycle \overleftarrow{C}

CAT*

The output of this transformation is 2 connected components

CAT* Theorem 3: Two biconnected outerplanar graphs G and H are isomorphic, iff WL(CAT*(G)) = WL(CAT*(H))

CAT* Theorem 3: Two biconnected outerplanar graphs G and H are isomorphic, iff WL(CAT*(G)) = WL(CAT*(H))

CAT* Theorem 3: Two biconnected outerplanar graphs G and H are isomorphic, iff WL(CAT*(G)) = WL(CAT*(H))

Next step:

Let's extend this to all outerplanar graphs.

A biconnected component is a maximal biconnected subgraph (with at least 3 nodes)

A biconnected component is a maximal biconnected subgraph (with at least 3 nodes)

A biconnected component is a maximal biconnected subgraph (with at least 3 nodes)

A biconnected component is a maximal biconnected subgraph (with at least 3 nodes)

A biconnected component is a maximal biconnected subgraph (with at least 3 nodes)

CAT Transformation of an outerplanar graph

CAT 1. Identify blocks

CAT 2. Let F be the graph induced by the edges that are in none of the blocks

CAT 2. Let **F** be the graph induced by the edges that are in none of the blocks

CAT 3. For all blocks B_i

CAT 3. Let's start with block B₁

CAT 3.1 Add the 2 connected components B'_i , $\overleftarrow{B'_i}$ from CAT*(B_i)

CAT 3.4 For all pairs of nodes v, \overleftarrow{v} in $\overrightarrow{B'}_i$, $\overrightarrow{B'}_i$, add a node p_v

CAT 3.4 Add edges edges $\{p_v, v\}, \{p_v, v\}$

CAT 3.5 Add a node b_i

CAT 3.5 Add edges $\{b_i, p_v\}, \forall v \in V(B_i)$

CAT 3.2 Let $A_i := V(B_i) \cap V(F)$

CAT 3.6 Color in orange all green nodes in A

CAT 3.6 Connect every node from A to its water green counterpart

CAT 3. Repeat for every block B_i

CAT 4. Add a node g

g

(c)

CAT 4. Add edges {g, b_i} for all nodes b_i

CAT Theorem 4: Outerplanar graphs G and H are isomorphic, iff WL(CAT(G)) = WL(CAT(H))

CAT

Linear time complexity:

- Time complexity dominated by computation of blocks and their Hamiltonian cycles (both linear)
- We only add a linear number of nodes and edges. O(|V| + |E|)

Experimental results

Table 4: Predictive performance of MPNNs with and without CAT on different molecular benchmark datasets. Arrows indicate whether smaller (\downarrow) or bigger (\uparrow) results are better. **Bold** entries are an MPNN with CAT that outperforms the same MPNN without CAT.

Dataset \rightarrow \downarrow Model	ZINC MAE↓	MOLHIV ROC-AUC ↑	MOLBACE ROC-AUC ↑	MOLBBBP ROC-AUC↑	MOLSIDER ROC-AUC ↑
GIN CAT+GIN GCN CAT+GCN GAT CAT+GAT	$\begin{array}{c} 0.168 \pm 0.007 \\ \textbf{0.101} \pm \textbf{0.004} \\ 0.184 \pm 0.013 \\ \textbf{0.123} \pm \textbf{0.008} \\ 0.375 \pm 0.013 \\ \textbf{0.201} \pm \textbf{0.022} \end{array}$	$77.9 \pm 1.0 76.7 \pm 1.8 76.7 \pm 1.4 77.1 \pm 1.6 76.6 \pm 2.0 75.3 \pm 1.6 $	74.6 ± 3.2 79.5 ± 2.5 77.9 ± 1.7 79.2 ± 1.5 81.7 ± 2.3 79.3 ± 1.6	$\begin{array}{c} 66.0 \pm 2.1 \\ \textbf{67.2} \pm \textbf{1.8} \\ 66.1 \pm 2.4 \\ \textbf{68.3} \pm \textbf{1.7} \\ 66.2 \pm 1.4 \\ 66.0 \pm 1.9 \end{array}$	56.6 ± 1.0 58.2 ± 0.9 56.7 ± 1.5 57.9 ± 1.8 58.4 ± 1.0 58.3 ± 1.3
$\begin{array}{l} \text{Dataset} \rightarrow \\ \downarrow \text{Model} \end{array}$	MOLESOL RMSE↓	MOLTOXCAST ROC-AUC ↑	MOLLIPO RMSE↓	MOLTOX21 ROC-AUC↑	
GIN CAT+GIN GCN CAT+GCN GAT CAT+GAT	$\begin{array}{c} 1.105 \pm 0.077 \\ \textbf{0.985} \pm \textbf{0.055} \\ 1.053 \pm 0.087 \\ \textbf{1.006} \pm \textbf{0.036} \\ 1.037 \pm 0.063 \\ 1.09 \pm 0.048 \end{array}$	65.3 ± 0.6 65.6 ± 0.5 64.4 ± 0.4 66.2 ± 0.8 63.8 ± 0.8 64.5 ± 0.8	$\begin{array}{c} 0.717 \pm 0.016 \\ 0.798 \pm 0.031 \\ 0.748 \pm 0.018 \\ 0.771 \pm 0.023 \\ 0.728 \pm 0.024 \\ 0.754 \pm 0.021 \end{array}$	$75.8 \pm 0.7 \\74.8 \pm 1.0 \\76.4 \pm 0.3 \\74.9 \pm 0.8 \\76.3 \pm 0.6 \\75.4 \pm 0.7$	

Strengths

- Better time complexity than other maximally expressive architecture for outerplanar graphs:
 - 3-GNN (linear vs cubic)
 - PlanE (linear vs quadratic)
- Very strong results in some datasets
- CAT can be applied to non-outerplanar graphs in linear time (without same guarantees)
- Recent work indicates CAT increases connectivity on the graph
- Most pharmaceutical molecules can be represented as outerplanar graphs.

Weaknesses

- Experimental results not consistent: sometimes is even outperformed by base model on G (especially common for GAT). Considerations:
 - CAT transformation introduces new "virtual" nodes and edges, so we have:
 - longer dependencies
 - GNN has to learn different representation for "virtual" nodes and edges
 - No SOTA models implemented
- Guarantees restricted to outerplanar graphs (not very impactful)
 - Would be good to generalize it to planar graphs (isomorphism still verifiable in polynomial time) like PlanE.

QUESTIONS?

References

- Franka Bause, Fabian Jogl, Pascal Welke, & Maximilian Thiessen (2023). Maximally Expressive GNNs for Outerplanar Graphs. In The Second Learning on Graphs Conference.
- Franka Bause, Fabian Jogl, Patrick Indri, Tamara Drucks, David Penz, Nils Morten Kriege, Thomas Gärtner, Pascal Welke, & Maximilian Thiessen. (2024). Maximally Expressive GNNs for Outerplanar Graphs
- Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How Powerful are Graph Neural Networks? In *International Conference on Learning Representations*.
- Radoslav Dimitrov, Zeyang Zhao, Ralph Abboud, & İsmail İlkan Ceylan. (2023). PlanE: Representation Learning over Planar Graphs.
- Hopcroft John E. and Tarjan Robert Endre. 1972. Isomorphism of planar graphs. In Complexity of Computer Computations (The IBM Research Symposia Series). Plenum Press, New York, 131–152.
- Hopcroft John E. and Wong J. K. 1974. Linear time algorithm for isomorphism of planar graphs (preliminary report). In 6th ACM Symposium on Theory of Computing (STOC). ACM Press, 172–184.
- Grötschla Florian
- https://www.wikipedia.org/
- <u>https://csacademy.com/app/graph_editor</u>
- https://edgitor.chunlaw.io/

Guidobene Davide dguidobene@student.ethz.ch

Seminar in Deep Neural Networks (FS 2023)