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GNNs
MPNN: ul+1 Φ(ul, Ѱ(Neil(u)))
Graph Neural Network’s goal would be to only consider the isomorphism 
class of a graph (i.e. 2 isomorphic graphs should give the same output).
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1-WL Test
ut+1 ← (ut, Neit(u))
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1-WL Test
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1-WL Test
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1-WL Test
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1-WL Test
If WL(G) ≠ WL(H), then G and H are not isomorphic
However, if WL(G) = WL(H), G and H might not be isomorphic
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GNNs
Problem: MPNN’s expressiveness is bounded by the 1-WL test.
In particular, GINs (Graph Isomorphism Networks) are proven to be as 
expressive as the 1-WL test.
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GNNs
Can we restrict ourselves to a simpler subclass of graphs?
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Planar graphs
Can be drawn on the plane in such a way that no edges cross each other
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Outerplanar graphs
Planar graph that can be drawn so that no vertex is “trapped” inside the 
edges of the graph
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Biconnected graph
Connected graph that is not broken into disconnected pieces by deleting 
any single vertex
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Biconnected graph
Connected graph that is not broken into disconnected pieces by deleting 
any single vertex
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Hamiltonian cycle
Cycle which goes over each node exactly once
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Hamiltonian cycle
Cycle which goes over each node exactly once
Theorem 1: Biconnected outerplanar graphs have a unique Hamiltonian 
cycle that can be found in linear time
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Hamiltonian cycle (2 directed variants)
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HALs (Hamiltonian Adjacency Lists)
Annotating each node with the sorted distances dc to all its neighbors on 
the two directed variants of the Hamiltonian cycle C.
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HALs (Hamiltonian Adjacency Lists)
Annotating each node with the sorted distances dc to all its neighbors on 
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HALs (Hamiltonian Adjacency Lists)
Annotating each node with the sorted distances dc to all its neighbors on 
the two directed variants of the Hamiltonian cycle C.
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HALs (Hamiltonian Adjacency Lists)
Annotating each node with the sorted distances dc to all its neighbors on 
the two directed variants of the Hamiltonian cycle C.
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HALs (Hamiltonian Adjacency Lists)
Annotating each node with the sorted distances dc to all its neighbors on 
the two directed variants of the Hamiltonian cycle C.
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Theorem 2: Two biconnected outerplanar graphs G and H with HAL and 
reverse sequences SG, SH and RG, RH are isomorphic, iff SG is a cyclic shift 
of SH or RH.
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SG=((1,4), (1,3,4), 
(1,4), (1,4), (1,2,4))

RG=((1,2,4), (1,4), 
(1,4), (1,3,4), (1,4))

SH=((1,3,4), (1,4), 
(1,4), (1,2,4), (1,4))
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S = (e, d, c, b, a), R = (a, b, c, d, e)



Idea
Let’s build a transformation to make SG and RG recognizable by WL test
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Agenda

1. Find transformation CAT* that guarantees maximal expressiveness for biconnected outerplanar graphs
2. Extend CAT* to build transformation CAT that covers all outerplanar graphs 

3. Use CAT to boost expressiveness of GNNs
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CAT*
Transformation of a biconnected outerplanar graph
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CAT*
1. Find directed Hamiltonian cycle C
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CAT*
3. Add edges not in the Hamiltonian cycle in both directions
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CAT*
4. Label the new edges (u, v) with their distance dC(v, u) according to HAL  
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CAT*
4. Label the new edges (u, v) with their distance dC(v, u) according to HAL  
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CAT*
2. Give on the directed Hamiltonian cycle C all the edges weight 1  
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CAT*
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CAT*
 Repeat the whole procedure on the reverse hamiltonian cycle C
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CAT*
The output of this transformation is 2 connected components 
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CAT*
Theorem 3: Two biconnected outerplanar graphs G and H are 
isomorphic, iff WL(CAT*(G)) = WL(CAT*(H))

34

G H



CAT*
Theorem 3: Two biconnected outerplanar graphs G and H are 
isomorphic, iff WL(CAT*(G)) = WL(CAT*(H))
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CAT*
Theorem 3: Two biconnected outerplanar graphs G and H are 
isomorphic, iff WL(CAT*(G)) = WL(CAT*(H))
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Next step:
Let’s extend this to all outerplanar graphs.
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Biconnected components and blocks
A biconnected component is a maximal biconnected subgraph (with at 
least 3 nodes)
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A biconnected component is a maximal biconnected subgraph (with at 
least 3 nodes)
A block is a biconnected outerplanar component
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Biconnected components and blocks
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Biconnected components and blocks
A biconnected component is a maximal biconnected subgraph (with at 
least 3 nodes)
A block is a biconnected outerplanar component
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CAT
Transformation of an outerplanar graph
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CAT
1. Identify blocks
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CAT
2. Let F be the graph induced by the edges that are in none of the blocks
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CAT
2. Let F be the graph induced by the edges that are in none of the blocks
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CAT
3. For all blocks Bi

47



CAT
3. Let’s start with block B1
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CAT
3.1 Add the 2 connected components B’i, B’i from CAT*(Bi)
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←



CAT
3.4 For all pairs of nodes v, v in B’i, B’i, add a node pv
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CAT
3.4 Add edges edges {pv, v}, {pv, v}
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←



CAT
3.5 Add a node bi
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CAT
3.5 Add edges {bi, pv}, ∀ v ∈ V(Bi)
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CAT
3.2 Let Ai := V(Bi) ∩ V(F)
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CAT
3.6 Color in orange all green nodes in A
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CAT
3.6 Connect every node from A to its water green counterpart
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CAT
3. Repeat for every block Bi
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CAT
4. Add a node g

58



CAT
4. Add edges {g, bi} for all nodes bi
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CAT
Theorem 4: Outerplanar graphs G and H are isomorphic, iff WL(CAT(G)) = 
WL(CAT(H))
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CAT
Linear time complexity:

- Time complexity dominated by computation of blocks and their 
Hamiltonian cycles (both linear)

- We only add a linear number of nodes and edges. O(|V| + |E|)
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Experimental results
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Strengths

- Better time complexity than other maximally expressive architecture for outerplanar 
graphs:
- 3-GNN (linear vs cubic)
- PlanE (linear vs quadratic)

- Very strong results in some datasets
- CAT can be applied to non-outerplanar graphs in linear time (without same 

guarantees)
- Recent work indicates CAT increases connectivity on the graph
- Most pharmaceutical molecules can be represented as outerplanar graphs.
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Weaknesses

- Experimental results not consistent: sometimes is even outperformed by base 
model on G (especially common for GAT). Considerations:
- CAT transformation introduces new “virtual” nodes and edges, so we have:

- longer dependencies
- GNN has to learn different representation for “virtual” nodes and edges

- No SOTA models implemented
- Guarantees restricted to outerplanar graphs (not very impactful)

- Would be good to generalize it to planar graphs (isomorphism still verifiable in 
polynomial time) like PlanE.
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QUESTIONS?
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