1 Sublinear-Time Approximation of Maximum Matching

Consider a graph \(G = (V, E) \). Recall that a matching is a set of edges \(M \subseteq E \) such that no two of the edges in \(M \) share an end-point. A fractional matching is the corresponding natural relaxation, where we assign to each edge \(e \in E \) a value \(x_e \in [0, 1] \) such that the summation of the edge-values in each node is at most 1, that is, for each node \(v \in V \), we have \(\sum_{e \in E(v)} x_e \leq 1 \), where \(E(v) \) denotes the set of edges incident on \(v \). We define \(y(v) = \sum_{e \in E(v)} x_e \) as the value of node \(v \) in the given fractional matching. The size of a fractional matching is defined as \(\sum_{e \in E} x_e \), and we have \(\sum_{e \in E} x_e = (\sum_{v \in V} y(v))/2 \) (why?). We call a fractional matching almost-maximal if for each edge \(e \in E \), there is one of its endpoints \(v \in e \) such that \(y(v) = \sum_{e' \in E(v)} x_{e'} \geq \frac{1}{1+\epsilon} \).

Exercise

(1a) In the class, we saw that any maximal matching has size at least \(1/2 \) of the maximum matching. Prove that the size \(\sum_{e \in E} x_e = (\sum_{v \in V} y(v))/2 \) of any almost-maximal fractional matching is at least \(\frac{1}{2(1+\epsilon)} \) of the size of maximum matching.

Consider a maximum matching \(M^* \) and an almost-maximal fractional matching which has value \(x_e \) on each edge \(e \). We prove that \(\sum_{e \in E} x_e \geq \frac{|M^*|}{2(1+\epsilon)} \). Consider \(|M^*| \) dollars spread around, where we have put one dollar on each edge \(e \) of the maximum matching \(M^* \). By the almost-maximality of the fractional matching, each edge \(e \) has at least one endpoint \(v \in e \) such that \(y(v) = \sum_{e' \in E(v)} x_{e'} \geq \frac{1}{1+\epsilon} \). Make edge \(e \) send its one dollar to one such endpoint \(v \). This way, each node receives at most one dollar (why?). Now, make node \(v \) split its one dollar among its incident edges \(E(v) \) proportional to the values \(x_{e'} \). This way, each edge receives at most \((1+\epsilon)x_{e'}\) dollars from \(v \). More generally, each edge \(e' \) receives at most \((1+\epsilon)x_{e'}\) dollars from each of its endpoints and thus overall at most \(2(1+\epsilon)x_{e'} \). We can conclude that \(\sum_{e' \in E} 2(1+\epsilon)x_{e'} \geq |M^*|\). In other words, \(\sum_{e \in E} x_e \geq \frac{|M^*|}{2(1+\epsilon)} \).

Thus, the above item indicates that almost-maximal fractional matchings also provide a reasonable approximation of the size of the maximum matching. But computing an almost-maximal fractional matching is much easier. We next see a LOCAL algorithm for that.

LOCAL-Algorithm for Almost-Maximal Fractional Matching: Initially, set \(x_e = 1/\Delta \) for each edge \(e \in E \). Then, for \(\log_{1+\epsilon} \Delta \) iterations, in each iteration, we do as follows:

- For each vertex \(v \) such that \(y(v) = \sum_{e \in E(v)} x_e \geq \frac{1}{1+\epsilon} \), we freeze all of its incident edges.
- For each unfrozen edge \(e \), set \(x_e \leftarrow x_e \cdot (1+\epsilon) \).

Exercise

(1b) Prove that the process always maintains a fractional matching, meaning that we always have \(\sum_{e \in E(v)} x_e \leq 1 \).

Per iteration, we freeze all edges incident on vertices \(v \) whose sum \(y(v) \) has passed \(\frac{1}{1+\epsilon} \) and then we increase unfrozen edges by a \((1+\epsilon)\) factor. Hence, the value \(y(v) \) can increase to at most \(\frac{1}{1+\epsilon} \cdot (1+\epsilon) = 1 \), but cannot pass that.
(1c) Prove that at the end, we have an almost-maximal fractional matching, meaning that for each edge $e \in E$, there is one of its endpoints $v \in e$ such that $\sum_{e \in E(v)} x_e \geq \frac{1}{1+\epsilon}$.

For each edge e, either during some it gets frozen because one of its endpoints $v \in e$ reaches a sum $y(v) = \sum_{e \in E(v)} x_e \geq \frac{1}{1+\epsilon}$, or the edge e gets multiplies by $(1 + \epsilon)$ in each iteration. The latter means x_e reaches a value of $\frac{1}{\epsilon} \cdot (1 + \epsilon)^{\log_{1+\epsilon} \Delta} = 1$. That would imply that even both of the endpoints $v \in e$ have $\sum_{e \in E(v)} x_e \geq \frac{1}{1+\epsilon}$.

Now that we have a simple LOCAL-algorithm for almost-maximal fractional matching, we use it to obtain a centralized algorithm for approximating the maximum matching. To estimate the size of maximum matching, we pick a set S of $k = \frac{20\Delta \log 1/\delta}{\epsilon^2}$ nodes at random (sampled with replacement). Here, δ is some certainty parameter $\delta \in [0,0.25]$. For each sampled node $v \in S$, we run the above LOCAL-algorithm around v, hence allowing us to learn $y(v)$.

Exercise

(1d) Define a linear function $f : \mathbb{R} \to \mathbb{R}$ such that when applied on the sample average $\sum_{v \in S} y(v)/|S|$, the resulting value $f(\sum_{v \in S} y(v)/|S|)$ is an unbiased estimator of $\sum_{e \in E} x_e = \sum_{e \in E} x_e$. That is,

$$\mathbb{E}_S[f(\sum_{v \in S} y(v)/|S|)] = \sum_{e \in E} x_e.$$

We have $\mathbb{E}_S[\sum_{v \in S} y(v)/|S|] = \frac{2\sum_{e \in E} x_e}{n}$ (why?). Hence, it suffices to define $f(z) = nz/2$.

(1e) What is the query complexity of our sublinear-time approximation algorithm?

Per sampled node, we need to simulate the algorithm in its $(\log_{1+\epsilon} \Delta)$-hop neighborhood. The size of this neighborhood and thus also the related query complexity is at most $O(\Delta \log_{1+\epsilon} \Delta)$. Hence, the overall query complexity is $O(k \Delta \log_{1+\epsilon} \Delta) = O(\Delta^{1+\log_{1+\epsilon} \Delta} \cdot \log_{1+\epsilon} \delta)$. In terms of dependency on Δ, this is much better than the $2O(\Delta)$ bound that we saw in the class.

(1f) Prove that the estimator that you defined in (1d) gives a $(2 + 3\epsilon)$-approximation of the maximum matching size, with probability at least $1 - \delta$.

By (1d), we know that the expectation of our estimator is $\sum_{e \in E} x_e$, which we know by (1a) is within a $2(1 + \epsilon)$ factor of the size of the maximum matching. We next examine how much the random value may deviate from this expectation. Define X_i to be the random variable that is equal to $y(s_i)$ where s_i denotes the i^{th} node in our sample set S. Notice that $X_i \in [0,1]$ and moreover, $\mathbb{E}[X_i] = \frac{2\sum_{e \in E} x_e}{n}$. Hence, $\mu = \mathbb{E}[\sum_{i=1}^k X_i] = \sum_{i=1}^k \mathbb{E}[X_i] = k \frac{2\sum_{e \in E} x_e}{n}$. Also notice that $\sum_{e \in E} x_e \geq \frac{n}{2\Delta}$ (why?) and thus, $\mu \geq k \frac{n}{2\Delta(1 + \epsilon)} = \frac{20\Delta \log 1/\delta}{\epsilon^2} \cdot \frac{1}{2\Delta} = \frac{10\log 1/\delta}{\epsilon^2}$. Therefore, by Chernoff bound, the probability that $X = \sum_{i=1}^k X_i$ deviates by more than a $(1 + \epsilon)$ factor from its expectation μ is at most

$$2e^{-\epsilon^2 \mu/3} = 2e^{-\frac{20\log 1/\delta}{\epsilon^3}} \leq \delta.$$

Thus, with probability at least $1 - \delta$, we get an expectation within a $2(1 + \epsilon)(1 + \epsilon) \leq 2 + 3\epsilon$ factor of the maximum matching.