Clock Synchronization
Chapter 8

h —— hschule Zidleh
Swiss Federal Institute of Technology Zurich

Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/1

You 113 Clock Synchronization

Rating

* Area maturity

Text book

First steps

* Practical importance

No apps Mission critical

* Theory appeal

Boooooooring Exciting

OI

Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/3

Overview

» Motivation

» Clock Sources & Hardware

» Single-Hop Clock Synchronization

» Clock Synchronization in Networks

» Protocols: RBS, TPSN, FTSP, GTSP
* Theory of Clock Synchronization

» Protocol: PulseSync

.

Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/4

Motivation

* Synchronizing time is essential for many applications
— Coordination of wake-up and sleeping times (energy efficiency)
— TDMA schedules
— Ordering of collected sensor data/events
— Co-operation of multiple sensor nodes
— Estimation of position information (e.g. shooter detection)

* Goals of clock synchronization
— Compensate offset between clocks
— Compensate drift between clocks

Localization

Duty-
Cycling

Properties of Clock Synchronization Algorithms

+ External versus internal synchronization
— External sync: Nodes synchronize with an external clock source (UTC)
— Internal sync: Nodes synchronize to a common time
— to a leader, to an averaged time, ...

» One-shot versus continuous synchronization
— Periodic synchronization required to compensate clock drift

» A-priori versus a-posteriori
— A-posteriori clock synchronization triggered by an event

* Global versus local synchronization (explained later)

» Accuracy versus convergence time, Byzantine nodes, ...

Clock Sources

» Radio Clock Signal:

— Clock signal from a reference source (atomic clock)
is transmitted over a long wave radio signal [

— DCF77 station near Frankfurt, Germany transmits at
77.5 kHz with a transmission range of up to 2000 km |

— Accuracy limited by the distance to the sender,
Frankfurt-Zurich is about 1ms.

— Special antenna/receiver hardware required

* Global Positioning System (GPS):

— Satellites continuously transmit own position and
time code

— Line of sight between satellite and receiver required
— Special antenna/receiver hardware required

Clock Sources (2)

* AC power lines:
— Use the magnetic field radiating from electric AC power lines
— AC power line oscillations are extremely stable
(10 ppm)
— Power efficient, consumes only 58 yW

— Single communication round required to correct
phase offset after initialization

» Sunlight:
— Using a light sensor to measure the length of a day

— Offline algorithm for reconstructing global .
timestamps by correlating annual solar patterns S um
(no communication required) Ry

T T T T T
Jan 2006 Jul 2008 Jan2007 Jul2007 Jan B00R

nnnnn
77777

Clock Devices in Sensor Nodes

» Structure
— External oscillator with a nominal frequency (e.g. 32 kHz or 7.37 MHz)
— Counter register which is incremented with oscillator pulses

— Works also when CPU is in sleep state
7.37 MHz quartz

& S) 32 kHz quartz

X TinyNode
32 kHz quartz
Platform System clock | Crystal oscillator
Mica2 7.37 MHz 32 kHz, 7.37 MHz
TinyNode 584 | 8 MHz 32 kHz
Tmote Sky 8 MHz 32 kHz

Clock Drift

* Accuracy

— Clock drift: random deviation from the nominal rate dependent on power
supply, temperature, etc.

rate
Lhe 2 This is a drift of up to
Y o o N 50 ps per second
11 A N AW A N A org1gsperhour
i SAVASEERA AN '

>

— E.g. TinyNodes have a maximum drift of 30-50 ppm at room temperature

Matorhain Tomparalura

21616
K .
2009

; 01
B21B14 o | Hi
O, | i | 02
[i | & 0
i i [i |

a2z b \‘_\‘ G

Frequency (Hz)
o

0
N 0%
= i
03
921810 " 0%
" 109
109
iz
L Wor e nee nw o m LN

10 & o s 0 15 20 22 1 %
Temperature {"C)

Sender/Receiver Synchronization

* Round-Trip Time (RTT) based synchronization

Time accor-
B t s ° ding to B i 3

Request Answer
from A from B

Time accor-
A t 10" ding to A >t 4

* Receiver synchronizes to sender's clock
* Propagation delay ¢ and clock offset 6 can be calculated
5= (t4 _tl)_(t3 _t2)
2
0= (tz _(tl +5))_(t4 _(ts +9)) _ (tz _t1)+(t3 _14)
2 2

Messages Experience Jitter in the Delay

* Problem: Jitter in the message delay
Various sources of errors (deterministic and non-deterministic)

o 0-100 ms 0-500 ms 1-10 ms

\\«\e’@] SendCmd Access _
' [[Resspton Jcaiback] G

0-100 ms

» Solution: Timestamping packets at the MAC layer [Marati et al.]
— Jitter in the message delay is reduced to a few clock ticks

Some Details

» Different radio chips use different paradigms:
— Leftis a CC1000 radio chip which generates an interrupt with each byte.

— Right is a CC2420 radio chip that generates a single interrupt for the
packet after the start frame delimiter is received.

([

\ I BYTE 1 BYTE2 BYTE3 BYTE4 5\ 8 ‘ SFD BYTE 1 ‘ BYTE 2 I BYTE 3 | 5
)

)

H 1 t 1

L L L
by b bl by b byt by t
BYTE_TIME

* In sensor networks propagation

can be ignored (<1us for 300m).
« Still there is quite some variance *
in transmission delay because of =~ .
latencies in interrupt handling
(pictureright), Mt w1,

Symmetric Errors

* Many protocols don’t even handle single-hop clock synchronization
well. On the left figures we see the absolute synchronization errors
of TPSN and RBS, respectively. The figure on the right presents a
single-hop synchronization protocol minimizing systematic errors.

Ferceriage
o 3 R ¥
.E
il
1 z
B
8
|]
<.
- I
.]
]
g |
B
-1
I
-|

» Even perfectly symmetric errors will sum up over multiple hops.

— In a chain of n nodes with a standard deviation o on each hop, the
expected error between head and tail of the chain is in the order of on.

Reference-Broadcast Synchronization (RBS)

* Asender synchronizes a set of receivers with one another
« Point of reference: beacon’s arrival time

L=4+Ss+ A+ B, tR,
=648t At By TRy
92[2 L= (PS‘A _PS,B)+(RA —Ry)

* Only sensitive to the difference in propagation and reception time

« Time stamping at the interrupt time when a beacon is received

« After a beacon is sent, all receivers exchange their reception times to
calculate their clock offset

* Post-synchronization possible
+ E.g., least-square linear regression to tackle clock drifts >

+ Multi-hop? Q

Time-sync Protocol for Sensor Networks (TPSN)

» Traditional sender-receiver synchronization (RTT-based)
» Initialization phase: Breadth-first-search flooding
— Root node at level 0 sends out a level discovery packet

— Receiving nodes which have not yet an assigned level set their level
to +1 and start a random timer

— After the timer is expired, a new level discovery packet will be sent

— When a new node is deployed, it sends out a level request packet after
a random timeout

Q/T\ﬂ Why this random timer? 6;?'
[2l v
(2]

(2] (2]

Time-sync Protocol for Sensor Networks (TPSN)

Time-sync Protocol for Sensor Networks (TPSN)

» Synchronization phase

— Root node issues a time sync packet which triggers a random timer at
all level 1 nodes

— After the timer is expired, the node asks its parent for synchronization
using a synchronization pulse

— The parent node answers with an acknowledgement

— Thus, the requesting node knows the round trip time and can calculate
its clock offset

— Child nodes receiving a synchronization pulse also start a random timer
themselves to trigger their own synchronization

Time Sync T\
Sync puszﬁCK § l\

tl +SA +AA +PAB+RB

s \
t,+S,+ A, + Py, +R, ‘) @/l

— — - — t3
g S TSI A AN Py B RR)] j
2 o,

» Time stamping packets at the MAC layer
* In contrast to RBS, the signal propagation time might be negligible
* Authors claim that it is “about two times” better than RBS 6 ®

» Again, clock drifts are taken into account using periodical «_~
synchronization messages

» Problem: What happens in a non-tree topology (e.g. grid)?

— Two neighbors may have bad synchronization? Q

Flooding Time Synchronization Protocol (FTSP)

Best tree for tree-based clock synchronization?

* Each node maintains both a local and a global time

* Global time is synchronized to the local time of a reference node
— Node with the smallest id is elected as the reference node

» Reference time is flooded through the network periodically

@ reference node

» Timestamping at the MAC Layer is used to compensate for
deterministic message delays

» Compensation for clock drift between synchronization messages

using a linear regression table i—

* Finding a good tree for clock synchronization is a tough problem
— Spanning tree with small (maximum or average) stretch.

« Example: Grid network, with n = m? nodes.

* No matter what tree you use, the maximum
stretch of the spanning tree will always be
at least m (just try on the grid figure right...)

* In general, finding the minimum max
stretch spanning tree is a hard problem,

however approximation algorithms exist
[Emek, Peleg, 2004].

Variants of Clock Synchronization Algorithms

Tree-like Algorithms Distributed Algorithms
e.g. FTSP e.g. GTSP

root

© jO}
O & o ®..__@-

Bad local
skew

All nodes consistently

average errors to all
neigbhors

FTSP vs. GTSP: Global Skew

* Network synchronization error (global skew)
— Pair-wise synchronization error between any two nodes in the network

FTSP (avg: 7.7 ps) GTSP (avg: 14.0 us)

3
g

Network Synchrorization Error (us)
& - 8
Network Synchronization Error (us)

3

o

5000 10000 15000 20000
Time (s)

o

FTSP vs. GTSP: Local Skew

* Neighbor Synchronization error (local skew)
— Pair-wise synchronization error between neighboring nodes

» Synchronization error between two direct neighbors:

FTSP (avg: 15.0 us) GTSP (avg: 2.8 ps)

Nelghbor Synchronization Exror (us)
Neighbor Synchronization Exror (us)
&

Global vs. Local Time Synchronization

» Common time is essential for many applications:
G\oba\ — Assigning a timestamp to a globally sensed event (e.g. earthquake)

Loca\ — Precise event localization (e.g. shooter detection, multiplayer games)

LOoa\ — TDMA-based MAC layer in wireless networks

Locd | _ Coordination of wake-up and sleeping times (energy efficiency)
. | >

Theory of Clock Synchronization

» Given a communication network
1. Each node equipped with hardware clock with drift
2. Message delays with jitter

worst-case (but constant)

* Goal: Synchronize Clocks (“Logical Clocks”)
+ Both global and local synchronization!

Time Must Behave!

» Time (logical clocks) should not be allowed to stand still or jump

. Let’s be more careful (and ambitious):
. Logical clocks should always move forward
» Sometimes faster, sometimes slower is OK.
* But there should be a minimum and a maximum speed.
* As close to correct time as possible! e

Formal Model

° ngdware clock H(f) = f0,9 hA7) AT Clock drift € is typically small, e.g.
with clock rate h () € [1-¢,1+¢] ¢ ~10 for a cheap quartz oscillator

- Logical clock L () which increases Logical clpcks with rate less than 1
at rate at least 1 and at most 3 behave differently (“synchronizer”)

Neglect fixed share of delay,
» Message delays € [0,1] normalize jitter

+ Employ a synchronization algorithm
to update the logical clock according H, Time is 152
to hardware clock and
messages from
neighbors Time is 140

Synchronization Algorithms: An Example (“Am>”)

* Question: How to update the logical clock Allow 3 = oo
based on the messages from the neighbors?
* Idea: Minimizing the skew to the fastest neighbor

— Set the clock to the maximum clock value received from any neighbor
(if larger than local clock value)

— forward new values immediately

* Optimum global skew of about D

» Poor local property
— First all messages take 1 time unit...
— ...then we have a fast message!

Eastast New time is D+x Newtimeis D+x gkew D!
Hardware

Clock Time is D+x Time is D+x Time is D+x f_H

B 5 8

Clock value: Old clock value: Old clock value: Old clock value: &

Synchronization Algorithms: 4m2x’

» The problem of A« is that the clock is always increased to the
maximum value

» Idea: Allow a constant slack y between the maximum neighbor clock
value and the own clock value

« The algorithm 4"+ sets the local clock value L(t) to
Li(t) = max(Li(z), max | L(t)~7)

— Worst-case clock skew between two neighboring nodes is still
O(D) independent of the choice of y!

* How can we do better?
— Adjust logical clock speeds to catch up with fastest node (i.e. no jump)?
— ldea: Take the clock of all neighbors into account by choosing the

oy,

average value? @&

Local Skew: Overview of Results

Everybody's expectation,
five years ago (,solved®)

Blocking
algorithm

Dynamic Networks!
Kappa algorithm [Kuhn et al., SPAA 2009]
[Lenzen et al., FOCS 2008]

-

Enforcing Clock Skew

N
[
~
&1
&)
~
v

[
-
v

S 2 3 E
2 3

* Messages between two neighboring nodes may be fast in one
direction and slow in the other, or vice versa.

* A constant skew between neighbors may be ,hidden®.

* In a path, the global skew may be in the order of D/2. Q

Local Skew: Lower Bound

h,=1 o LA =x h, = 1+e L) =x+ly/2
\/ \I Higher
lo=D N ‘ ~ clock
/[f
h,=1 Ly(t) h, =1 T L)

e Add |,/2 skew in |,/(2¢) time, messing with clock rates and messages
e Afterwards: Continue execution for |,/(4(/3-1)) time (all h, = 1)

-> Skew reduces by at most |,/4 = at least |,/4 skew remains

- Consider a subpath of length |, = 1,:¢/(2(/3-1)) with at least |,/4 skew

> Add |,/2 skew in |,/(2¢) = 1,/(4(5-1)) time = at least 3/4-1; skew in subpath
* Repeat this trick (+)4,-%,+%,-%,...) log,; ;) D times

Theorem: Q(log 4, D) skew between neighbors Q

Local Skew: Upper Bound

* Surprisingly, up to small constants, the Q(log,;,), D) lower bound
can be matched with clock rates € [1,5] (tough part, not included)

* We get the following picture [Lenzen et al., PODC 2009]:

max rate 8 1+e

local skew

We can have both ... because too large
smooth and clock rates will amplify
accurate clocks! the clock drift e.

Local Skew: Upper Bound

* Surprisingly, up to small constants, the Q(log;,,, D) lower bound
can be matched with clock rates € [1,3] (tough part, not included)

» We get the following picture [Lenzen et al., PODC 2009]:

max rate 3 1+e 1+6(e) 1+e 2

local skew

©(log D) | ©(logy;. D) | O(logy,. D) | ©(logy;. D)

We can have both ... because too large
smooth and clock rates will amplify
accurate clocks! the clock drift e.

* In practice, we usually have 1/e ~ 10* > D. In other words, our initial
intuition of a constant local skew was not entirely wrong! ©

Back to Practice: Synchronizing Nodes

= Sending periodic beacon messages to synchronize nodes

Beacon ilnterval B

100 130

t @ reference clock

\ ‘ — @
|
jitter jitter

How accurately can we synchronize two Nodes?

= Message delay jitter affects clock synchronization quality

y(x) = Fx + Ay

/L clock offset

relative clock rate
(estimated)

Beacon interval B Q

Clock Skew between two Nodes

= Lower Bound on the clock skew between two neighbors

Beacon interval B

Error in the rate estimation:
— Jitter in the message delay
— Beacon interval

— Number of beacons k

J

F—r|~

BkVk

Synchronization error:

[y —y L
0V

Multi-hop Clock Synchronization

= Nodes forward their current estimate of the reference clock
Each synchronization beacon is affected by a random jitter J

©.0.6.0_0_ _0

Ji J2

= Sum of the jitter grows with the square-root of the distance
stddev(J; + J, + J; + J, + Js + ... J,) = Vdxstddev(J)

Multi-hop:
g —y| ~ J—\/a
y—Y \/E

Single-hop:

!]
i —y| ~ I

P

Linear Regression (e.g. FTSP)

= FTSP uses linear regression to compensate for clock drift
Jitter is amplified before it is sent to the next hop

Beacon interval B

L clock offset

relative clock rate
(estimated)

The PulseSync Protocol

» Send fast synchronization pulses through the network
— Speed-up the initialization phase
— Faster adaptation to changes in temperature or network topology

Beacon time B
A

©
FTSP % - [
Expected time ® [
=D-B/2 @ N .
Beacon time B
[: |
% |
PulseSync ¢ - |
Expected time ® [|
= D'tpulse @ - t

The PulseSync Protocol (2)

Remove self-amplification of synchronization error

Fast flooding cannot completely eliminate amplification

y(x) = fx + Ay

L clock offset

relative clock rate
(estimated)

Beacon interval B

FTSP vs. PulseSync

* Global Clock Skew
e Maximum synchronization error between any two nodes

300 300
1 Average Global Skew —

; Fuerage GIobal Skew —
Maamum Global Skew =0

. Pu |SeSyn n e

Global Skew (s)
Global Skew (us)
o
2

000

0

Time (5)

Synchronization Error FTSP PulseSync

Average (t>2000s) 23.96 ps 4.44 us
Maximum (t>2000s) 249 ps 38 ps

FTSP vs. PulseSync

Synchronization error (us)

Sychnronization Error vs. distance from root node

100

80 -

60 +

40 +

20

FTSP PulseSync

10 15

ﬁﬁwmﬁﬁfhmlﬁ‘mm rI-anri1rhrﬁrl‘:rhrhf]’l(hd‘lfi’ll’[‘l|hl’hfhfh|l”{-\

10 15

Distance (Hops) Distance (Hops)

Open Problem

» As listed on slide 9/6, clock synchronization has lots of parameters.
Some of them (like local/gradient) clock synchronization have only
started to be understood.

* Local clock synchronization in combination with other parameters
are not understood well, e.g.
— accuracy vs. convergence
— fault-tolerance in case some clocks are misbehaving [Byzantine]
— clock synchronization in dynamic networks

