
Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/1 Ad Hoc and Sensor Networks – Roger Wattenhofer –

Data Gathering
Chapter 4

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/2

Environmental Monitoring (PermaSense)

• Understand global warming in

alpine environment
• Harsh environmental conditions
• Swiss made (Basel, Zurich)

Go

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/3 Ad Hoc and Sensor Networks – Roger Wattenhofer –

Rating

• Area maturity

• Practical importance

• Theory appeal

First steps Text book

No apps Mission critical

Boooooooring Exciting

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/4

Overview

• Motivation

• Data gathering

– Max, Min, Average, Median, …

• Universal Spanning Tree: Data gathering with changing subsets

• Energy-efficient data gathering: Dozer

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/5

Sensor networks

• Sensor nodes

– Processor & memory
– Short-range radio
– Battery powered

• Requirements

– Monitoring geographic region
– Unattended operation
– Long lifetime

What kind of traffic patterns may
occur in a sensor network?

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/6

Data Gathering

• Different traffic demands require different solutions

• Continuous data collection

� Every node sends a sensor reading once every two minutes

• Database-like network queries
� “Which sensors measure a temperature higher than 21°C?”

• Event notifications

� A sensor sends an emergency message in case of fire detection.

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/7 Ad Hoc and Sensor Networks – Roger Wattenhofer –

Sensor Network as a Database

• Use paradigms familiar from relational databases to simplify the

“programming” interface for the application developer.

• TinyDB is a service that supports
SQL-like queries on a sensor network.
– Flooding/echo communication
– Uses in-network aggregation to

speed up result propagation.

Distributed Aggregation

What cannot be
computed using
these functions?

• Growing interest in distributed aggregation

– Sensor networks, distributed databases...

• Aggregation functions?
– Distributive (max, min, sum, count)
– Algebraic (plus, minus, average)
– Holistic (median, kth smallest/largest value)

• Combinations of these functions enable complex queries.

– „What is the average of the 10% largest values?“

• How difficult is it to compute these aggregation primitives?

• Model:
– All nodes hold a single element.
– A spanning tree is available

– Shortest path tree (SPT), all nodes on shortest path to sink, radius D
– Messages can only contain 1 or 2 elements.

Aggregation Model

19

8

9

20

65

96 28
100

19

27 45

36

71

3

Can be generalized
to an arbitrary

number of elements!

O(1)

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/10 Ad Hoc and Sensor Networks – Roger Wattenhofer –

Computing the Minimum Value…

• Use a simple flooding-echo procedure � convergecast

• Time complexity: �(D)
• Number of messages: �(n)

19

8
9

20

65

96
28

100

19

27 45

36

71

3

send me the
min-value!

9

96

45

3

20

28

19

36

20

3
19 3

3

minimum = 3

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/11 Ad Hoc and Sensor Networks – Roger Wattenhofer –

Distributive & Algebraic Functions

How do you compute the sum of all values?
... what about the average?
... what about a random value?
... or even the median?

Holistic Functions

Total Bytes Xmitted vs. Aggregation Function

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

EXTERNAL MAX AVERAGE COUNT MEDIAN
Aggregation Function

To
ta

l B
yt

es
 X

m
itt

ed

„Thus, we have shown that (...)
in network aggregation can
reduce communication costs
by an order of magnitude over
centralized approaches, and
that, even in the worst case
(such as with MEDIAN), it
provides performance equal to
the centralized approach.“

TAG simulation: 2500 nodes in a 50x50 grid

• It is widely believed that holistic functions are hard to compute using

in-network aggregation.
� Example: TAG is an aggregation service for sensor networks. It

is fast for other aggregates, but not for the MEDIAN aggregate.

• Choosing elements uniformly at random is a good idea...

� How is this done?

• Assuming that all nodes know the
sizes n1,...,nt

 of the subtrees rooted
at their children v1,...,vt, the request
is forwarded to node vi with probability:
 pi := ni / (1+ �k nk).

• Key observation: Choosing an element randomly requires O(D)
time!
� Use pipe-lining to select several random elements!

Randomized Algorithm

... n1 n2 nt

p1 p2

pt

v

request

D elements in
O(D) time!

With probability 1 / (1+ �k nk)
node v chooses itself.

Randomized Algorithm

-1 1x1 x2 xd
n1 elem. n2 elem. nd+1 elem.

a1 a2 an-1 an… … …

• The algorithm operates in phases

� A candidate is a node whose element is possibly the solution.
� The set of candidates decreases in each phase.

• A phase of the randomized algorithm:

 1. Count the number of candidates in all subtrees

2. Pick O(D) elements x1,...,xd uniformly at random

3. For all those elements, count the number of
smaller elements!

Each step can
be performed
in O(D) time!

Randomized Algorithm

• Using these counts, the number of candidates can be reduced by a

factor of D in a constant number of phases with high probability.

• It can be shown that �(D·logD n) is a lower bound for finding the
median. In other words, this simple randomized algorithm is
asymptotically optimal.

• The only remaining question: Is randomization needed,
or, what can we do deterministically?

The time complexity is O(D·logD n) w.h.p. With probability
at least 1-1/nc for
a constant c≥1.

Deterministic Algorithm

• Why is it difficult to find a good deterministic algorithm?

� Finding a good selection of elements that provably reduces
the set of candidates is hard.

• Idea: Always propagate the median of all received values.

• Problem: In one phase, only the

hth smallest element is found if h
is the height of the tree...
� Time complexity: O(n/h)

3
2 100

3

2

1 100 99 102

100

1 100 99 102

One could do a lot better!!!
(Not shown in this course.)

• One can generalize the median problem: In k-selection we are

looking for the kth smallest element.
• We have seen a simple randomized algorithm with time

complexity O(D·logD n) w.h.p., which is asympotitally optimal.
• There fastest known deterministic algorithm has time

complexity O(D·logD
2 n).

• If �c ≤ 1: D = nc, k-selection can be solved efficiently in
�(D) time even deterministically.

Median Summary

Recall the 50x50
grid used to

evaluate TAG

Sensor Network as a Database

• We do not always require information from all sensor nodes.

– SELECT MAX(temp) FROM sensors WHERE node_id < “H”.

W

A

B

F

X

C

G Z

Y

D
E

17

23

23

15

20

22

18 22

22

Max = 23

19

20

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/19 Ad Hoc and Sensor Networks – Roger Wattenhofer –

Selective data aggregation

• In sensor network applications

– Queries can be frequent
– Sensor groups are time-varying
– Events happen in a dynamic fashion

• Option 1: Construct aggregation trees for each group

– Setting up a good tree incurs communication overhead

• Option 2: Construct a single spanning tree
– When given a sensor group, simply use the induced tree
– In other words, cut all the branches that are not used

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/20 Ad Hoc and Sensor Networks – Roger Wattenhofer –

root/sink

Example

• The red tree is the universal spanning tree. All links cost 1.

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/21 Ad Hoc and Sensor Networks – Roger Wattenhofer –

root/sink

Given the lime subset…

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/22 Ad Hoc and Sensor Networks – Roger Wattenhofer –

root/sink

Induced Subtree

• The cost of the induced subtree for this set S is 11. The optimal is 8.

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/23 Ad Hoc and Sensor Networks – Roger Wattenhofer –

Universal Spanning Tree Problem

• Given

– A set of nodes V in the Euclidean plane (or in a metric space)
– A root node r 2 V
– Define stretch of a universal spanning tree T to be

– We’re looking for a spanning tree T on V with minimum stretch.

• Remark: A Steiner tree for a set of nodes S

is like a MST, except that it may use nodes
and edges outside S to help.
– Example: Steiner Tree for nodes A, B, C, D,

with potentially all points in the plane helping

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/24 Ad Hoc and Sensor Networks – Roger Wattenhofer –

Main results

• Upper bound:
 For the minimum UST problem in Euclidean plane, with edge cost

being distance, an approximation of O(log n) can be achieved.

• Lower bound:
 No polynomial time algorithm can approximate the minimum UST

problem with stretch better than �(log n / log log n).

• [Jia, Lin, Noubir, Rajaraman and Sundaram, STOC 2005]

• Question: Why are MST or SPT not good as UST?

– Again, nodes in the plane, cost Euclidean distance

Algorithm sketch

• For the simplest Euclidean case:
• Recursively divide the plane and select random node.

• Results: The induced tree

has logarithmic overhead.
The aggregation delay is
also constant.

Simulation with random node distribution & random events

 [Note: UST = GIST, Group-Independent Spanning Tree]

Continuous Data Gathering

• Long-term measurements

• Unattended operation

• Low data rates

• Battery powered

• Network latency

• Dynamic bandwidth demands

Energy conservation is crucial to prolong network lifetime

Energy-Efficient Protocol Design

• Communication subsystem is the main energy consumer

– Power down radio as much as possible

• Issue is tackled at various layers
– MAC
– Topology control / clustering
– Routing

TinyNode Power Consumption

uC sleep, radio off 0.015 mW

Radio idle, RX, TX 30 – 40 mW

Orchestration of the whole network stack
to achieve radio duty cycles of ~1‰

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/29 Ad Hoc and Sensor Networks – Roger Wattenhofer –

contention window

Dozer System

• Tree based routing towards data sink

– No energy wastage due to multiple paths
– Current strategy: Shortest Path Tree

• “TDMA based” link scheduling
– Each node has two independent schedules
– No global time synchronization

• The parent initiates each TDMA round with a beacon
– Enables integration of disconnected nodes
– Children tune in to their parent’s schedule

time

beacon

beacon

activation frame

child

parent

Dozer System

• Parent decides on its children data upload times

– Each interval is divided into upload slots of equal length
– Upon connecting each child gets its own slot
– Data transmissions are always acknowledged

• No traditional MAC layer
– Transmissions happen at exactly predetermined point in time
– Collisions are explicitly accepted
– Random jitter resolves schedule collisions

time

jitter

slot 1 slot 2 slot k

data transfer

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/31 Ad Hoc and Sensor Networks – Roger Wattenhofer –

Dozer System

• Lightweight backchannel

– Beacon messages comprise commands

• Bootstrap
– Scan for a full interval
– Suspend mode during network downtime

• Potential parents

– Avoid costly bootstrap mode on link failure
– Periodically refresh the list

periodic channel
activity check

Dozer System

• Clock drift compensation

– Dynamic adaptation to clock drift of the parent node

• Application scheduling
– Make sure no computation is blocking the network stack
– TDMA is highly time critical

• Queuing strategy

– Fixed size buffers

Evaluation

• Platform
– TinyNode

– MSP 430
– Semtech XE1205

– TinyOS 1.x

• Testbed
– 40 Nodes
– Indoor deployment
– > 1 month uptime
– 30 sec beacon interval
– 2 min data sampling interval

Dozer in Action

Tree Maintenance

on average 1.2%

1 week of operation

on average 1.2%

1 week of operation

on average 0.16%

Mean energy consumption of 0.082 mW

Energy Consumption

on average 0.16%

Mean energy consumption of 0.082

mWWWWW

Energy Consumption

• Relay node
• No scanning

0.28% duty cycle

0.32% duty cycle

• Leaf node
• Few neighbors
• Short disruptions

scanning

overhearing

updating

#children

More than one sink?

• Use the anycast approach and send to the closest sink.

• In the simplest case, a source wants to minimize the number of

hops. To make anycast work, we only need to implement the regular
distance-vector routing algorithm.

• However, one can imagine more complicated schemes where e.g.
sink load is balanced, or even intermediate load is balanced.

Dozer Conclusions & Possible Future Work

• Conclusions

– Dozer achieves duty cycles in the magnitude of 0.1%.
– Abandoning collision avoidance was the right thing to do.

• Possible Future work
– Optimize delivery latency of sampled sensor data.
– Make use of multiple frequencies to further reduce collisions.

Ad Hoc and Sensor Networks – Roger Wattenhofer – 4/40 Ad Hoc and Sensor Networks – Roger Wattenhofer –

Open problem

• Continuous data gathering is somewhat well understood, both

practically and theoretically, in contrast to the two other paradigms,
event detection and query processing.

• One possible open question is about event detection. Assume that
you have a battery-operated sensor network, both sensing and
having your radio turned on costs energy. How can you build a
network that raises an alarm quickly if some large-scale event
(many nodes will notice the event if sensors are turned on)
happens? What if nodes often sense false positives (nodes often
sense something even if there is no large-scale event)?

