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Components and Interfaces

TinyOS code is written in nesC, which is C with some additional language features for components and 
concurrency. A nesC application consists of one or more components assembled, or wired, to form an 
application executable. Components define two scopes: one for their specification which contains the names 
of their interfaces, and a second scope for their implementation. A component provides and uses interfaces. 
The provided interfaces are intended to represent the functionality that the component provides to its user in 
its specification; the used interfaces represent the functionality the component needs to perform its job in its 
implementation. 

Interfaces are bidirectional: they specify a set of commands, which are functions to be implemented by the 
interface's provider, and a set of events, which are functions to be implemented by the interface's user. For a 
component to call the commands in an interface, it must implement the events of that interface. A single 
component may use or provide multiple interfaces and multiple instances of the same interface. 

The set of interfaces which a component provides together with the set of interfaces that a component uses is 
considered that component's signature. 

Configurations and Modules

There are two types of components in nesC: modules and configurations. Modules provide the 
implementations of one or more interfaces. Configurations are used to assemble other components together, 
connecting interfaces used by components to interfaces provided by others. Every nesC application is 
described by a top-level configuration that wires together the components inside. 

Blink: An Example Application

Let's look at a concrete example: Blink in the TinyOS tree. This application displays a counter on the three 
mote LEDs. In actuality, it simply causes the LED0 to to turn on and off at 4Hz, LED1 to turn on and off at 
2Hz, and LED2 to turn on and off at 1Hz. The effect is as if the three LEDs were displaying a binary count of 
zero to seven every two seconds. 

Blink is composed of two components: a module, called "BlinkC.nc", and a configuration, called 
"BlinkAppC.nc". Remember that all applications require a top-level configuration file, which is typically 
named after the application itself. In this case BlinkAppC.nc is the configuration for the Blink application 
and the source file that the nesC compiler uses to generate an executable file. BlinkC.nc, on the other 
hand, actually provides the implementation of the Blink application. As you might guess, BlinkAppC.nc 
is used to wire the BlinkC.nc module to other components that the Blink application requires. 

The reason for the distinction between modules and configurations is to allow a system designer to build 
applications out of existing implementations. For example, a designer could provide a configuration that 



simply wires together one or more modules, none of which she actually designed. Likewise, another 
developer can provide a new set of library modules that can be used in a range of applications. 

The BlinkAppC.nc Configuration

The nesC compiler compiles a nesC application when given the file containing the top-level configuration. 
Let's look at BlinkAppC.nc, the configuration for this application first: 

configuration BlinkAppC {
}
implementation {
  components MainC, BlinkC, LedsC;
  components new TimerMilliC() as Timer0;
  components new TimerMilliC() as Timer1;
  components new TimerMilliC() as Timer2;

  BlinkC -> MainC.Boot;
  BlinkC.Timer0 -> Timer0;
  BlinkC.Timer1 -> Timer1;
  BlinkC.Timer2 -> Timer2;
  BlinkC.Leds -> LedsC;
}

The first thing to notice is the key word configuration, which indicates that this is a configuration file. 
The first two lines, 

configuration BlinkAppC {
}

simply state that this is a configuration called BlinkAppC. Within the empty braces here it is possible to 
specify uses and provides clauses, as with a module. This is important to keep in mind: a configuration 
can use and provide interfaces. Said another way, not all configurations are top-level applications. 

The actual configuration is implemented within the pair of curly brackets following the key word 
implementation . The components lines specify the set of components that this configuration 
references. In this case those components are Main, BlinkC, LedsC, and three instances of a timer 
component called TimerMilliC which will be referenced as Timer0, Timer1, and Timer2. This is 
accomplished via the as keyword which is simply an alias. 

As we continue reviewing the BlinkAppC application, keep in mind that the BlinkAppC component is not the 
same as the BlinkC component. Rather, the BlinkAppC component is composed of the BlinkC component 
along with MainC, LedsC and the three timers. 

The remainder of the BlinkAppC configuration consists of connecting interfaces used by components to 
interfaces provided by others. The MainC.Boot and MainC.SoftwareInit interfaces are part of 
TinyOS's boot sequence. Suffice it to say that these wirings enable the LEDs and Timers to be initialized. 

The last four lines wire interfaces that the BlinkC component uses to interfaces that the TimerMilliC and 
LedsC components provide. To fully understand the semantics of these wirings, it is helpful to look at the 
BlinkC module's definition and implementation. 



The BlinkC.nc Module

module BlinkC {
  uses interface Timer<TMilli> as Timer0;
  uses interface Timer<TMilli> as Timer1;
  uses interface Timer<TMilli> as Timer2;
  uses interface Leds;
  uses interface Boot;
}
implementation
{
  // implementation code omitted
}

The first part of the module code states that this is a module called BlinkC and declares the interfaces it 
provides and uses. The BlinkC module uses three instances of the interface Timer<TMilli> using the 
names Timer0, Timer1 and Timer2 (the <TMilli> syntax simply supplies the generic Timer interface with 
the required timer precision). Lastly, the BlinkC module also uses the Leds and Boot interfaces. This means 
that BlinkC may call any command declared in the interfaces it uses and must also implement any events 
declared in those interfaces. 

After reviewing the interfaces used by the BlinkC component, the semantics of the last four lines in 
BlinkAppC.nc should become clearer. The line BlinkC.Timer0 -> Timer0 wires the three 
Timer<TMilli> interface used by BlinkC to the Timer<TMilli> interface provided the three 
TimerMilliC component. The BlinkC.Leds -> LedsC line wires the Leds interface used by the 
BlinkC component to the Leds interface provided by the LedsC component. 

nesC uses arrows to bind interfaces to one another. The right arrow (A->B) as "A wires to B". The left side 
of the arrow (A) is a user of the interface, while the right side of the arrow (B) is the provider. A full wiring 
is A.a->B.b, which means "interface a of component A wires to interface b of component B." Naming the 
interface is important when a component uses or provides multiple instances of the same interface. For 
example, BlinkC uses three instances of Timer: Timer0, Timer1 and Timer2. When a component only has 
one instance of an interface, you can elide the interface name. For example, returning to BlinkAppC: 

configuration BlinkAppC {
}
implementation {
  components MainC, BlinkC, LedsC;
  components new TimerMilliC() as Timer0;
  components new TimerMilliC() as Timer1;
  components new TimerMilliC() as Timer2;

  BlinkC -> MainC.Boot;
  BlinkC.Timer0 -> Timer0;
  BlinkC.Timer1 -> Timer1;
  BlinkC.Timer2 -> Timer2;
  BlinkC.Leds -> LedsC;
}

The interface name Leds does not have to be included in LedsC: 

  BlinkC.Leds -> LedsC; // Same as BlinkC.Leds -> LedsC.Leds

Because BlinkC only uses one instance of the Leds interface, this line would also work: 

  BlinkC -> LedsC.Leds; // Same as BlinkC.Leds -> LedsC.Leds



As the TimerMilliC components each provide a single instance of Timer, it does not have to be included in 
the wirings: 

  BlinkC.Timer0 -> Timer0;
  BlinkC.Timer1 -> Timer1;
  BlinkC.Timer2 -> Timer2;

However, as BlinkC has three instances of Timer, eliding the name on the user side would be a compile-time 
error, as the compiler would not know which instance of Timer was being wired: 

  BlinkC -> Timer0.Timer;  // Compile error!

The direction of a wiring arrow is always from a user to a provider. If the provider is on the left side, you can 
also use a left arrow: 

  Timer0 <- BlinkC.Timer0; // Same as BlinkC.Timer0 -> Timer0;

For ease of reading, however, most wirings are left-to-right. 

Interfaces, Commands, and Events

We learned that if a component uses an interface, it can call the interface's commands and must implement 
handlers for its events. We also saw that the BlinkC component uses the Timer, Leds, and Boot interfaces. 
Let's take a look at those interfaces: 

interface Boot {
  event void booted();
}

interface Leds {

  /**
   * Turn LED n on, off, or toggle its present state.
   */
  async command void led0On();
  async command void led0Off();
  async command void led0Toggle();

  async command void led1On();
  async command void led1Off();
  async command void led1Toggle();

  async command void led2On();
  async command void led2Off();
  async command void led2Toggle();

  /**
   * Get/Set the current LED settings as a bitmask. Each bit corresponds to
   * whether an LED is on; bit 0 is LED 0, bit 1 is LED 1, etc.
   */
  async command uint8_t get();
  async command void set(uint8_t val);

}



interface Timer
{
  // basic interface
  command void startPeriodic( uint32_t dt );
  command void startOneShot( uint32_t dt );
  command void stop();
  event void fired();

  // extended interface omitted (all commands)
}

Looking over the interfaces for Boot, Leds, and Timer, we can see that since BlinkC uses those 
interfaces it must implement handlers for the Boot.booted() event, and the Timer.fired() event. 
The Leds interface signature does not include any events, so BlinkC need not implement any in order to 
call the Leds commands. Here, again, is BlinkC's implementation of Boot.booted(): 

  event void Boot.booted()
  {
    call Timer0.startPeriodic( 250 );
    call Timer1.startPeriodic( 500 );
    call Timer2.startPeriodic( 1000 );
  }

BlinkC uses 3 instances of the TimerMilliC component, wired to the interfaces Timer0, Timer1, and 
Timer2. The Boot.booted() event handler starts each instance. The parameter to 
startPeriodic() specifies the period in milliseconds after which the timer will fire (it's millseconds 
because of the <TMilli> in the interface). Because the timer is started using the startPeriodic() 
command, the timer will be reset after firing such that the fired() event is triggered every n milliseconds. 

Invoking an interface command requires the call keyword, and invoking an interface event requires the 
signal keyword. BlinkC does not provide any interfaces, so its code does not have any signal statements: 
in a later lesson, we'll look at the boot sequence, which signals the Boot.booted() event. 

Next, look at the implementation of the Timer.fired(): 

  event void Timer0.fired()
  {
    call Leds.led0Toggle();
  }

  event void Timer1.fired()
  {
    call Leds.led1Toggle();
  }

  event void Timer2.fired()
  {
    call Leds.led2Toggle();
  }

Because it uses three instances of the Timer interface, BlinkC must implement three instances of 
Timer.fired() event. When implementing or invoking an interface function, the function name is 
always interface.function. As BlinkC's three Timer instances are named Timer0, Timer1, and Timer2, it 
implements the three functions Timer0.fired, Timer1.fired, and Timer2.fired. 



TinyOS Execution Model: Tasks

All of the code we've looked at so far is synchronous. It runs in a single execution context and does not have 
any kind of pre-emption. That is, when synchronous (sync) code starts running, it does not relinquish the 
CPU to other sync code until it completes. This simple mechanism allows the TinyOS scheduler to minimize 
its RAM consumption and keeps sync code very simple. However, it means that if one piece of sync code 
runs for a long time, it prevents other sync code from running, which can adversely affect system 
responsiveness. For example, a long-running piece of code can increase the time it takes for a mote to 
respond to a packet. 

So far, all of the examples we've looked at have been direct function calls. System components, such as the 
boot sequence or timers, signal events to a component, which takes some action (perhaps calling a command) 
and returns. In most cases, this programming approach works well. Because sync code is non-preemptive, 
however, this approach does not work well for large computations. A component needs to be able to split a 
large computation into smaller parts, which can be executed one at a time. Also, there are times when a 
component needs to do something, but it's fine to do it a little later. Giving TinyOS the ability to defer the 
computation until later can let it deal with everything else that's waiting first. 

Tasks enable components to perform general-purpose "background" processing in an application. A task is a 
function which a component tells TinyOS to run later, rather than now.

 A task is declared in your implementation module using the syntax 

  task void taskname() { ... }

where taskname() is whatever symbolic name you want to assign to the task. Tasks must return void 
and may not take any arguments. To dispatch a task for (later) execution, use the syntax 

  post taskname();

A component can post a task in a command, an event, or a task. Because they are the root of a call graph, a 
tasks can safely both call commands and signal events. We will see later that, by convention, commands do 
not signal events to avoid creating recursive loops across component boundaries (e.g., if command X in 
component 1 signals event Y in component 2, which itself calls command X in component 1). These loops 
would be hard for the programmer to detect (as they depend on how the application is wired) and would lead 
to large stack usage. 

The post operation places the task on an internal task queue which is processed in FIFO order. When a 
task is executed, it runs to completion before the next task is run. Therefore, and as the above examples 
showed, a task should not run for long periods of time. Tasks do not preempt each other, but a task can be 
preempted by a hardware interrupts (which we haven't seen yet). If you need to run a series of long 
operations, you should dispatch a separate task for each operation, rather than using one big task. The post 
operation returns an error_t, whose value is either SUCCESS or FAIL. A post fails if and only if the task 
is already pending to run (it has been posted successfully and has not been invoked yet). 

Split-Phase Operations

Because nesC interfaces are wired at compile time, callbacks (events) in TinyOS are very efficient. In most 
C-like languages, callbacks have to be registered at run-time with a function pointer. This can prevent the 
compiler from being able to optimize code across callback call paths. Since they are wired statically in nesC, 
the compiler knows exactly what functions are called where and can optimize heavily. 



The ability to optimize across component boundaries is very important in TinyOS, because it has no blocking 
operations. Instead, every long-running operation is split-phase. In a blocking system, when a program calls 
a long-running operation, the call does not return until the operation is complete: the program blocks. In a 
split-phase system, when a program calls a long-running operation, the call returns immediately, and the 
called abstraction issues a callback when it completes. This approach is called split-phase because it splits 
invocation and completion into two separate phases of execution. Here is a simple example of the difference 
between the two: 

Blocking Split-Phase 

if (send() == SUCCESS) {
  sendCount++;
}

// start phase
send();

//completion phase
void sendDone(error_t err) {
  if (err == SUCCESS) {
    sendCount++;
  }
}

Split-phase code is often a bit more verbose and complex than sequential code. But it has several advantages. 
First, split-phase calls do not tie up stack memory while they are executing. Second, they keep the system 
responsive: there is never a situation when an application needs to take an action but all of its threads are tied 
up in blocking calls. Third, it tends to reduce stack utilization, as creating large variables on the stack is 
rarely necessary. 

Split-phase interfaces enable a TinyOS component to easily start several operations at once and have them 
execute in parallel. Also, split-phase operations can save memory. This is because when a program calls a 
blocking operation, all of the state it has stored on the call stack (e.g., variables declared in functions) have to 
be saved. As determining the exact size of the stack is difficult, operating systems often choose a very 
conservative and therefore large size. Of course, if there is data that has to be kept across the call, split-phase 
operations still need to save it. 

The command Timer.startOneShot is an example of a split-phase call. The user of the Timer interface 
calls the command, which returns immediately. Some time later (specified by the argument), the component 
providing Timer signals Timer.fired. In a system with blocking calls, a program might use sleep(): 

Blocking Split-phase 

state = WAITING;
op1();
sleep(500);
op2();
state = RUNNING

state = WAITING;
op1();
call Timer.startOneShot(500);

event void Timer.fired() {
  op2();
  state = RUNNING;
}



Radio communication

TinyOS provides a number of interfaces to abstract the underlying communications services and a number of 
components that provide (implement) these interfaces. All of these interfaces and components use a common 
message buffer abstraction, called message_t, which is implemented as a nesC struct (similar to a C 
struct). message_t is an abstract data type, whose members are read and written using accessor and 
mutator functions [1]. 

typedef nx_struct message_t {
  nx_uint8_t header[sizeof(message_header_t)];
  nx_uint8_t data[TOSH_DATA_LENGTH];
  nx_uint8_t footer[sizeof(message_footer_t)];
  nx_uint8_t metadata[sizeof(message_metadata_t)];
} message_t;

Basic Communications Interfaces

There are a number of interfaces and components that use message_t as the underlying data structure. 
Let's take a look at some of the interfaces that are in the tos/interfaces directory to familiarize 
ourselves with the general functionality of the communications system: 

• Packet   - Provides the basic accessors for the message_t abstract data type. This interface 
provides commands for clearing a message's contents, getting its payload length, and getting a pointer 
to its payload area. 

• Send   - Provides the basic address-free message sending interface. This interface provides commands 
for sending a message and canceling a pending message send. The interface provides an event to 
indicate whether a message was sent successfully or not. It also provides convenience functions for 
getting the message's maximum payload as well as a pointer to a message's payload area. 

• Receive   - Provides the basic message reception interface. This interface provides an event for 
receiving messages. It also provides, for convenience, commands for getting a message's payload 
length and getting a pointer to a message's payload area. 
 

Active Message Interfaces

Since it is very common to have multiple services using the same radio to communicate, TinyOS provides 
the Active Message (AM) layer to multiplex access to the radio. The term "AM type" refers to the field used 
for multiplexing. AM types are similar in function to the Ethernet frame type field, IP protocol field, and the 
UDP port in that all of them are used to multiplex access to a communication service. AM packets also 
includes a destination field, which stores an "AM address" to address packets to particular motes. Additional 
interfaces, also located in the tos/interfaces directory, were introduced to support the AM services: 

• AMPacket   - Similar to Packet, provides the basic AM accessors for the message_t abstract data 
type. This interface provides commands for getting a node's AM address, an AM packet's destination, 
and an AM packet's type. Commands are also provides for setting an AM packet's destination and 
type, and checking whether the destination is the local node. 

• AMSend   - Similar to Send, provides the basic Active Message sending interface. The key difference 
between AMSend and Send is that AMSend takes a destination AM address in its send command. 

http://www.tinyos.net/tinyos-2.x/tos/interfaces/AMSend.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/AMPacket.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Receive.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Send.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc


Components

A number of components implement the basic communications and active message interfaces. Let's take a 
look at some of the components in the /tos/system directory. You should be familiar with these 
components because your code needs to specify both the interfaces your application uses as well as the 
components which provide (implement) those interfaces: 

• AMReceiverC   - Provides the following interfaces: Receive, Packet, and AMPacket. 
• AMSenderC   - Provides AMSend, Packet, AMPacket, and PacketAcknowledgements as 
Acks. 

• AMSnooperC   - Provides Receive, Packet, and AMPacket. 
• AMSnoopingReceiverC   - Provides Receive, Packet, and AMPacket. 
• ActiveMessageAddressC   - Provides commands to get and set the node's active message 

address. This interface is not for general use and changing the a node's active message address can 
break the network stack, so avoid using it unless you know what you are doing. 

Sending a Message over the Radio

 Our message will send both the node id and the counter value over the radio. Rather than directly writing 
and reading the payload area of the message_t with this data, we will use a structure to hold them and then 
use structure assignment to copy the data into the message payload area. Using a structure allows reading and 
writing the message payload more conveniently when your message has multiple fields or multi-byte fields 
(like uint16_t or uint32_t) because you can avoid reading and writing bytes from/to the payload using indices 
and then shifting and adding (e.g. uint16_t x = data[0] << 8 + data[1]). Even for a message 
with a single field, you should get used to using a structure because if you ever add more fields to your 
message or move any of the fields around, you will need to manually update all of the payload position 
indices if you read and write the payload at a byte level. Using structures is straightforward. The following 
defines a message structure with a uint16_t node id and a uint16_t counter in the payload: 

typedef nx_struct BlinkToRadioMsg {
  nx_uint16_t nodeid;
  nx_uint16_t counter;
} BlinkToRadioMsg;

If this code doesn't look even vaguely familiar, you should spend a few minutes reading up on C structures. If 
you are familiar with C structures, this syntax should look familar but the nx_ prefix on the keywords 
struct and uint16_t should stand out. The nx_ prefix is specific to the nesC language and signifies that 
the struct and uint16_t are network types [2]  [3]  . Network types have the same representation on all 
platforms. The nesC compiler generates code that transparently reorders access to nx_ data types and 
eliminates the need to manually address endianness and alignment (extra padding in structs present on some 
platforms) issues.

We will implement a new application, called BlinkToRadioC which periodically broadcast a counter 
value.Now that we have defined a message type for our application, BlinkToRadioMsg, we will next see 
how to send the message over the radio.

Let's walk through the steps, one-by-one: 

1. We will use the AMSend interface to send packets as well as the Packet and AMPacket interfaces 
to access the message_t abstract data type. We need to start the radio using the 
ActiveMessageC.SplitControl interface.

http://www.tinyos.net/tinyos-2.x/tos/system/ActiveMessageAddressC.nc
http://www.tinyos.net/tinyos-2.x/tos/system/AMSnoopingReceiverC.nc
http://www.tinyos.net/tinyos-2.x/tos/system/AMSnooperC.nc
http://www.tinyos.net/tinyos-2.x/tos/system/AMSenderC.nc
http://www.tinyos.net/tinyos-2.x/tos/system/AMReceiverC.nc


module BlinkToRadioC {
  ...
  uses interface Packet;
  uses interface AMPacket;
  uses interface AMSend;
  uses interface SplitControl as AMControl;
}

Note that SplitControl has been renamed to AMControl using the as keyword. nesC allows 
interfaces to be renamed in this way for several reasons. First, it often happens that two or more 
components that are needed in the same module provide the same interface. The as keyword allows 
one or more such names to be changed to distinct names so that they can each be addressed 
individually. Second, interfaces are sometimes renamed to something more meaningful. In our case, 
SplitControl is a general interface used for starting and stopping components, but the name 
AMControl is a mnemonic to remind us that the particular instance of SplitControl is used to 
control the ActiveMessageC component. 

2. We need a message_t to hold our data for transmission.  These declarations need to be added in the 
implementation block of BlinkToRadioC.nc: 

implementation {
  bool busy = FALSE;
  message_t pkt;
  ...
}

Next, we need to handle the initialization of the radio. The radio needs to be started when the system 
is booted so we must call AMControl.start inside Boot.booted. The only complication is 
that in our current implementation, we start a timer inside Boot.booted and we are planning to use 
this timer to send messages over the radio but the radio can't be used until it has completed starting 
up. The radio signals that it has completed starting through the AMControl.startDone event. To 
ensure that we do not start using the radio before it is ready, we need to postpone starting the timer 
until after the radio has completed starting. We can accomplish this by moving the call to start the 
timer, which is now inside Boot.booted, to AMControl.startDone, giving us a new 
Boot.booted with the following body: 

  event void Boot.booted() {
    call AMControl.start();
  }

We also need to implement the AMControl.startDone and AMControl.stopDone event 
handlers, which have the following bodies: 

  event void AMControl.startDone(error_t err) {
    if (err == SUCCESS) {
      call Timer0.startPeriodic(TIMER_PERIOD_MILLI);
    }
    else {
      call AMControl.start();
    }
  }

  event void AMControl.stopDone(error_t err) {
  }



If the radio is started successfully, AMControl.startDone will be called with the error_t 
parameter set to a value of SUCCESS. If the radio starts successfully, then it is appropriate to start the 
timer. If, however, the radio does not start successfully, then it obviously cannot be used so we try 
again to start it. This process continues until the radio starts, and ensures that the node software 
doesn't run until the key components have started successfully. If the radio doesn't start at all, a 
human operator might notice that the LEDs are not blinking as they are supposed to, and might try to 
debug the problem. 

3. Since we want to transmit the node's id and counter value every time the timer fires, we need to add 
some code to the Timer0.fired event handler: 

event void Timer0.fired() {
  ...
  if (!busy) {
    BlinkToRadioMsg* btrpkt = (BlinkToRadioMsg*)(call Packet.getPayload(&pkt, 
NULL));
    btrpkt->nodeid = TOS_NODE_ID;
    btrpkt->counter = counter;
    if (call AMSend.send(AM_BROADCAST_ADDR, &pkt, sizeof(BlinkToRadioMsg)) == 
SUCCESS) {
      busy = TRUE;
    }
  }
}

This code performs several operations. First, it ensures that a message transmission is not in progress 
by checking the busy flag. Then it gets the packet's payload portion and casts it to a pointer to the 
previously declared BlinkToRadioMsg external type. It can now use this pointer to initialise the 
packet's fields, and then send the packet by calling AMSend.send. The packet is sent to all nodes in 
radio range by specyfing AM_BROADCAST_ADDR as the destination address. Finally, the test against 
SUCCESS verifies that the AM layer accepted the message for transmission. If so, the busy flag is set 
to true. For the duration of the send attempt, the packet is owned by the radio, and user code must not 
access it.

4. Looking through the Packet, AMPacket, and AMSend interfaces, we see that there is only one 
event we need to worry about, AMSend.sendDone: 

  /**
   * Signaled in response to an accepted send request. msg is
   * the message buffer sent, and error indicates whether
   * the send was successful.
   *
   * @param  msg   the packet which was submitted as a send request
   * @param  error SUCCESS if it was sent successfully, FAIL if it was not,
   *               ECANCEL if it was cancelled
   * @see send
   * @see cancel
   */
  event void sendDone(message_t* msg, error_t error);

This event is signaled after a message transmission attempt. In addition to signaling whether the 
message was transmitted successfully or not, the event also returns ownership of msg from AMSend 
back to the component that originally called the AMSend.send command. Therefore sendDone 
handler needs to clear the busy flag to indicate that the message buffer can be reused: 

  event void AMSend.sendDone(message_t* msg, error_t error) {
    if (&pkt == msg) {



      busy = FALSE;
    }
  }

Note the check to ensure the message buffer that was signaled is the same as the local message buffer. 
This test is needed because if two components wire to the same AMSend, both will receive a 
sendDone event after either component issues a send command. Since a component writer has no 
way to enforce that her component will not be used in this manner, a defensive style of programming 
that verifies that the sent message is the same one that is being signaled is required. 

5. The following lines can be added just below the existing components declarations in the 
implementation block of BlinkToRadioAppC.nc: 

implementation {
  ...
  components ActiveMessageC;
  components new AMSenderC(AM_BLINKTORADIO);
  ...
}

These statements indicate that two components, ActiveMessageC and AMSenderC, will provide 
the needed interfaces. However, note the slight difference in their syntax. ActiveMessageC is a 
singleton component that is defined once for each type of hardware platform. AMSenderC is a 
generic, parameterized component. The new keyword indicates that a new instance of AMSenderC 
will be created. The AM_BLINKTORADIO parameter indicates the AM type of the AMSenderC. We 
can extend the enum in the BlinkToRadio.h header file to incorporate the value of 
AM_BLINKTORADIO: 

enum {
  AM_BLINKTORADIO = 6,
  TIMER_PERIOD_MILLI = 250
};

6. The following lines will wire the used interfaces to the providing components. These lines should be 
added to the bottom of the implementation block of BlinkToRadioAppC.nc: 

implementation {
  ...
  App.Packet -> AMSenderC;
  App.AMPacket -> AMSenderC;
  App.AMSend -> AMSenderC;
  App.AMControl -> ActiveMessageC;
}

Receiving a Message over the Radio

Now that we have an application that is transmitting messages, we can add some code to receive and process 
the messages. Let's write code that, upon receiving a message, sets the LEDs to the three least significant bits 
of the counter in the message. 

1. We will use the Receive interface to receive packets. 

module BlinkToRadioC {
  ...



  uses interface Receive;
}

2. We need to implement the Receive.receive event handler: 

event message_t* Receive.receive(message_t* msg, void* payload, uint8_t len) {
  if (len == sizeof(BlinkToRadioMsg)) {
    BlinkToRadioMsg* btrpkt = (BlinkToRadioMsg*)payload;
    call Leds.set(btrpkt->counter);
  }
  return msg;
}

The receive event handler performs some simple operations. First, we need to ensure that the 
length of the message is what is expected. Then, the message payload is cast to a structure pointer of 
type BlinkToRadioMsg* and assigned to a local variable. Then, the counter value in the message 
is used to set the states of the three LEDs. Note that we can safely manipulate the counter variable 
outside of an atomic section. The reason is that receive event executes in task context rather than 
interrupt context (events that have the async keyword can execute in interrupt context). Since the 
TinyOS execution model allows only one task to execute at a time, if all accesses to a variable occur 
in task context, then no race conditions will occur for that variable. Since all accesses to counter 
occur in task context, no critical sections are needed when accessing it. 

3. The following lines can be added just below the existing components declarations in the 
implementation block of BlinkToRadioAppC.nc: 

implementation {
  ...
  components new AMReceiverC(AM_BLINKTORADIO);
  ...
}

This statement means that a new instance of AMReceiverC will be created. AMReceiver is a 
generic, parameterized component. The new keyword indicates that a new instance of 
AMReceiverC will be created. The AM_BLINKTORADIO parameter indicates the AM type of the 
AMReceiverC and is chosen to be the same as that used for the AMSenderC used earlier, which 
ensures that the same AM type is being used for both transmissions and receptions. 
AM_BLINKTORADIO is defined in the BlinkToRadio.h header file. 

4. Update the wiring by insert the following line just before the closing brace of the 
implementation block in BlinkToRadioAppC: 

implementation {
  ...
  App.Receive -> AMReceiverC;
}
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