Exercise 7
 Sample Solution

Question: Slotted Aloha

We use slotted Aloha and all machines would like to send in each slot

$$
\operatorname{Pr}(\text { success })=n \cdot p \cdot(1-p)^{(n-1)}
$$

We do not know the exact number of n but

$$
A \leq n \leq B
$$

What p is worst case optimal in this scenario?

Worst Case Optimal?!?

1.) You select a transmission probability p between 0 and 1
2.) An evil adversary knows what p you have chosen and is now allowed to decide on the number of machines in the network. (Bounded by A and B)

What p do you have to chose to get the maximal Pr(success)?

What happens for $p=1 / A$?

What happens for $p=1 / B$?

What happens for $\mathrm{p}=1 / 160$?

Which n will the Adversary choose?

Optimizing for the Worst Case

Find $p_{\text {opt }}$ where $\min \left\{\operatorname{Pr}\left(A, p_{\text {opt }}\right), \operatorname{Pr}\left(B, p_{\text {opt }}\right\}\right.$ is maximized!

Optimizing for the Worst Case

Find $p_{\text {opt }}$ where $\min \left\{\operatorname{Pr}\left(A, p_{\text {opt }}\right), \operatorname{Pr}\left(B, p_{\text {opt }}\right\}\right.$ is maximized!

Optimizing for the Worst Case

$p_{\text {opt }}$ is where the minimum of the two curves is maximized

Gory Mathematical Details

$$
\begin{aligned}
A p_{\mathrm{opt}}\left(1-p_{\mathrm{opt}}\right)^{A-1} & =B p_{\mathrm{opt}}\left(1-p_{\mathrm{opt}}\right)^{B-1} \\
\frac{A}{B} & =\left(1-p_{\mathrm{opt}}\right)^{B-1-(A-1)}=\left(1-p_{\mathrm{opt}}\right)^{B-A} \\
p_{\mathrm{opt}} & =1-\sqrt[B-A]{\frac{A}{B}} .
\end{aligned}
$$

For $A=100$ and $B=200$ we get

$$
p_{\text {opt }}=0.006908
$$

