Exercise 7 Sample Solution

Ad Hoc and Sensor Networks – Philipp Sommer – X/1

We use slotted Aloha and all machines would like to send in each slot

$$\Pr(success) = n \cdot p \cdot (1-p)^{(n-1)}$$

We do not know the exact number of n but

$$A \leq n \leq B$$

What p is worst case optimal in this scenario?

- 1.) You select a transmission probability p between 0 and 1
- 2.) An evil adversary knows what p you have chosen and is now allowed to decide on the number of machines in the network. (Bounded by A and B)

What p do you have to chose to get the maximal Pr(success)?

What happens for p=1/A?

What happens for p=1/B?

Which n will the Adversary choose?

Find p_{opt} where min{Pr(A,p_{opt}), Pr(B,p_{opt}} is maximized!

Find p_{opt} where min{Pr(A,p_{opt}), Pr(B,p_{opt}} is maximized!

 \boldsymbol{p}_{opt} is where the minimum of the two curves is maximized

$$Ap_{\text{opt}}(1-p_{\text{opt}})^{A-1} = Bp_{\text{opt}}(1-p_{\text{opt}})^{B-1}$$
$$\frac{A}{B} = (1-p_{\text{opt}})^{B-1-(A-1)} = (1-p_{\text{opt}})^{B-A}$$
$$p_{\text{opt}} = 1 - \sqrt[B-A]{\frac{A}{B}}.$$

For A = 100 and B = 200 we get $p_{opt} = 0.006908$

Ad Hoc and Sensor Networks – Philipp Sommer – X/11