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1 Degree of Euclidean Graphs

From the four considered algorithms the Minimum Spanning Tree (MST) is the only one resulting
in a bounded-degree topology. Figure 1 depicts worst-case instances for the different graphs. Fig-
ure 1(a) gives thereby an idea why the degree of the MST is bounded to six. If the angle between
two adjacent edges (u, v) and (u,w) is less than 60 degrees it would be cheaper to abandon one
of these edges and add (v, w) to the final topology. By the definition of the Relative Neighbor-
hood Graph (RNG), an edge is discarded if a node is situated inside the lune of this edge (see
Figure 1(b)). However, the boundary is not included. If we therefore arrange n nodes on a circle
around another node, we end up with a maximum degree of n. The same worst-case example also
exists for the Gabriel Graph (GG), and the Delaunay Triangulation (DT) (Figure 1(c) and (d)).
With these topologies the critical areas depicted in Figure 1 do not contain any other nodes on
the circle around the center node. Thus, we also obtain a graph with unbounded degree in the
worst case.

60°

u

v

w

(a) MST (b) RNG (c) GG (d) DT

Figure 1: Bad network instances for the four Euclidean graphs. One can see that only the MST
has bounded degree.

2 Face Routing continued

a) Consider Figure 2, where node A and B are connected by an edge of length 1, C and D
are in the circle spanned by AB, and |BC| > d and |DA| > d. By the QUDG connectivity
model, the edges BC and DA need not be present.

When the Gabriel Graph is applied directly to the graph, node A will include the edge AC,
but not AB, as C is in the circle spanned by AB. Similarly, B includes the edge BD, but
not BA, as D is in the circle spanned by BA. The resulting Gabriel Graph consists only of
the two edges AC and BD, disconnecting the originally connected graph.

b) The definition of an SDG says that the end-points of any connection (u, v) are connected
to any node contained in the disk with diameter (u, v). In fact, that is all information the
Gabriel Graph needs to know to planarize a given graph. Therefore, we can directly apply
the Gabriel Graph on any SDG to obtain a planar subgraph, on which we can run our face
routing algorithms.



Figure 2: Gabriel Graph on QUDGs may disconnect the graph.

3 Gabriel Graph Spanner Property

It can be shown that the Gabriel Graph (GG) is no Euclidean spanner but has a spanner ratio in
Ω(
√
n). In Figure 2 a bad network instance is depicted. In order to clarify the example we assume

that the construction of the GG is done in steps. We first consider the edge (u, v). We see that
this edge is replaced by a detour via an additional node (indicated by the two arrows labeled with
1). However these edges are also replaced in a second step. If we develop this recursive concept,
one can see that we obtain a fractal-like construction. We now use the Pythagorean theorem to
compute the total length of the path from u to v along the GG.

We make the following observations:

• With the given construction scheme, the GG degenerates to a chain. Thus, the total number
of hops on the GG from u to v is n− 1

• In each construction step the number of edges in the graph doubles as each existing edge
is replaced by two new ones. As a consequence the construction algorithm terminates in
O(log n) rounds.

By applying the Pythagorean theorem we can compute the Euclidean length of the path from
u to v during each round of the construction as:
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We apply i = log n and get a total Euclidean length of

2logn ∗ 1/
√

2
logn

= n ∗ 1/
√
n =
√
n

By definition the shortest path between any two points in a spanner graph must not be more
than a constant factor longer than the shortest path between these two nodes in the original graph.
As we have shown the GG does not satisfy this property as it may produce a path which is O(

√
n)

times longer than the shortest path. Thus, the GG is no Euclidean spanner.

4 Topology Control

a) The benefit of topology control is more pronounced in dense networks as opposed to sparse
topologies: Redundancy and high congestion normally come along with high density. From
a management point of view it is better to restrict the number of neighbors to as few as
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Figure 3: Fractal construction of a worst-case instance for the Gabriel Graph.

possible. This not only facilitates routing decisions but also helps bounding the size of
the required neighbor table. As it was shown in the lecture topology control also allows
nodes to reduce their sending power. On the one hand, this leads to energy conservation at
the individual nodes. On the other hand, by decreasing transmission power interference is
diminished yielding higher throughput and less retransmissions due to collisions. However,
topology control does also make sense in sparse networks to get rid of costly links that are
not vital for network connectivity.

The overhead incurred by a topology algorithm should be kept in mind. In order to maintain
the desired properties of the network the algorithm has to exchange information with all of
its potential neighbors. This includes periodic quality measurements of individual links and
the actual distributed computation of the algorithm itself to handle dynamic environments.
This overhead may become significant if not much data is sent over the network. As a
consequence, the algorithm wastes a lot of energy that could be used by the application
itself if we completely discarded topology control. Another issue that leads to a bad overall
network performance is the establishment of virtual bottlenecks. Topology control may
drop links that are not required to satisfy the desired properties. However, some of the
abandoned links might allow extra routes between almost independent components (clusters)
in the network. Without them network traffic between the components is burdened on the
remaining links connecting the two parts of the network.

b) We show that the XTC algorithm results in a bounded degree topology for UDGs by proving
that no two adjacent edges in the network enclose an angle less than π/3. From this it follows
that XTC yields degree at most 6. Assume for contradiction that the two edges (u, v) and
(u,w) enclose an angle α < π/3 at node u. Furthermore let v be u’s neighbor that was
included into u’s neighbor list before w, that is v ≺u w or dist(u, v) < dist(u,w). Since the
distance between u and v is less than the distance between u and w and α < π/3, it follows
that dist(v, w) < dist(u,w). Since we consider a UDG, also the edge (v, w) is in the graph,
as dist(v, w) < dist(u,w) < 1. Consequently v ≺w u, implies that u is not included in w’s
neighbor list, which is however a contradiction to the assumption that the edge (u, v) is in
the resulting topology.

If we abandon the constraint that the given network is a Unit Disk Graph, the XTC algorithm
is no longer able to guarantee bounded degree. It can be seen from Figure 3 that the angle
α between two links of node v can become arbitrary small in the presence of obstacles.
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Figure 4: XTC cannot guarantee a minimum angle α, and thus also no bounded degree, if obstacles
are considered.
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