
Discrete Event Systems – lecture summary

Andreas Müller

March 6, 2007

Abstract

This summary is based on the slides Discrete Event Systems by
Christoph Stamm, WS06/07.

Contents

1 Automata and Languages

1.1 Definitions

Alphabet A set of symbols (characters, letters).

String A string or word is a sequence of symbols of an →alphabet.

I The empty string contains no symbols and is denoted by ε
(don’t confuse with empty set ∅, which is not a string, but
rather a set of no strings).

I The length of the string is the number of symbols, e.g. |ε| =
0.

Regular Language A language L is called a regular language, if
there is a FA, that accepts the language L. All finite languages
are regular.

Infinite Language A language is infinite if it contains an infinite
number of strings. A language can be infinite but regular (ex-
ample: The language that consists of binary strings with an odd
number of ones).

1.2 Regular Operations

I Union (
⋃

): Match one of the patterns

I Concatenation (•): Match patterns in sequence

I Kleene-star (∗): Match pattern 0 or more times

I Kleene-plus (+): Match pattern 1 or more times

The result of a regular operator applied to a regular language is always
a regular language. In other words, regular languages are closed under
the operations of union, concatenation and Kleene-star/plus.

1

1.3 Finite Automata (FA) [1/11]

1.3.1 Definition: Finite Automaton

A finite automaton (FA) is a 5-tuple (Q,Σ, δ, q0, F) where

I Q is a finite set called the states

I Σ is a finite set called the alphabet

I δ : Q× Σ → Q is the transformation function

I q0 ∈ Q is the start state

I F ⊆ Q is the set of accept states (final states)

1.3.2 Definition: Accepted Language

The language accepted (or recognized) by a finite automaton M is the
set of all strings accepted by M . It is denoted by L(M).

I Not all languages can be described as the accepted language of
an FA.

1.4 Regular Expressions (REX) [1/22]

1.4.1 Regular Expressions in UNIX

Regular Operations:
Operation Symbol UNIX version Meaning

Union
⋃

| match one of the patterns
Concatenation • implicit match patterns in sequence

Kleene-star ∗ ∗ match pattern 0 or more times
Kleene-plus + + match pattern 1 or more times

Match between 10 and 15 times: {10, 15}
Operator precedence is ∗, •,

⋃
Command Line:

I egrep -i ’expression’

� -i: Ignore Case

I perl -wlne’print if /expression/’ $file

I UNIX searches for lines containing the given string, to search for
lines consisting of the string:

� egrep ’^expression$’

1.5 Non-deterministic Finite Automata (NFA) [1/48]

An NFA is an automaton whose transitions don’t need to be determin-
istic, i.e. there can be multiple transitions from a state for the same
symbol. If the automaton encounters such a transition, it is assumed
to be in all possible states simultaneously. Any labeled graph with a
start state is an NFA.

2

Definition: A non-deterministic finite automaton (NFA) is encap-
sulated by M = (Q,Σ, δ, q0, F) in the same way as an FA, except that
δ has different domain and co-domain: δ : Q×σε → P (Q), where P (Q)
is the power set of Q, so that δ(q, a) is the set of all endpoints of edges
from q which are labeled by a.

Definition: A string u is accepted by an NFA M iff there exists a
path starting at q0 which is labeled by u and ends in an accept state.
The language accepted by M is the set of all strings accepted by M
and is denoted by L(M).

1.5.1 Regular Operations for NFA

NFA are closed under regular operations. Regular operations can be
applied easily to NFA:

Union (A
⋃

B): Put A and B in parallel. Create new start state and
conect it to all former start states with ε-edges.

Concatenation (A •B): Use start states from A, connect all accept
states of A to all start states from B via ε-edges and use accept
states from B as new accept states.

Kleene-plus (A+): Loop back all accept states to start states via
ε-edges.

Kleene-star (A∗): Same as Kleene-plus, but create a new, accepting
start state that links to the old start state with an εedge.

1.6 State Minimization

I omit non-reachable states

I find equivalent states and join them

1.7 Transitions between FA, NFA and REX

FA, NFA and REX are equivalent.

1.7.1 NFA→FA

I always minimize the automaton first

I create power set of states (n states → 2n states)

I each new state that contains an accept state becomes an accept
state

I new start state: set of old start state and all states that ca re-
cursively reached from there with ε

1.7.2 REX→NFA [1/69]

→ slide 1/69

3

1.7.3 NFA→REX [1/83ff]

Via generic nondeterministic finite automaton (GNFA):

I a GNFA is an automaton whose edges are labeled by regular
expressions with

� a unique start state with in-degree 0 (but arrows to every
other state)

� a unique accept state (not the start state) with out-degree
0 (but arrows from every other state)

� (an arrow from any state to any other state)

Conversion algorithm

1. construct GNFA from NFA

(a) if there is more than one arrow from one state to another,
unify them using

⋃
(b) create an unique start state with in-degree 0
(c) create an unique accept state with out-degree 0
(d) (if there is no arrow from one state to another, insert one

with label ∅)
2. loop: as long as GNFA has more than 2 states, rip out arbitrary

interior state and update labels

3. the last edge is labeled with the regular expression

1.8 Pumping Lemma [1/94]

For every regular language L, there is a number p (pumping numer),
such that any string in L of legth ≥ p is pumpable within its first p
letters.

In other words, for all u ∈ L with |u| ≥ p, we can write:

I u = xyz (x is a prefix, y is a suffix)

I |y| ≥ 1 (mid-portion is non-empty)

I |xy| ≤ p (pumping occurs in first p letters)

I xyiz ∈ L for all i ≥ 0 (can pump y-portion)

(the pumping lemma may be able to prove that a language is non-
regular, but not that a language is regular)

2 Smarter Automata

2.1 Context free grammars (CFG) [2/5]

Definition: A context free grammar consists of (V,Σ, R, S) with

I V : a finite set of variables (or symbols, or non-terminals)

I Σ: a finite set of terminals (or the alphabet)

4

I R: a finite set of rules (or productions) of the form v → w with
v ∈ V an w ∈ (Σε ∪ V)∗

I S ∈ V : the start symbol

2.1.1 Derivation tree (parse tree) [2/10]

I each node is a symbol

� root is the start symbol
� parents are variables (non-terminals)
� leaves are terminals

I leaves spell out the derived tree from left to right

2.1.2 Ambiguity

Definition: A string x is said to be ambiguous relative the grammar
G if there are two essentially different ways to derive x in G. I.e. x
admits two or more different parse trees (or x admits different left-
most or right-most derivations). A grammar G is ambiguous if it L(G)
contains an ambiguous string.

2.1.3 Chomsky Normal Form [2/36]

We want only rules of the following forms:

I S → ε (only start state may produce ε)

I A → BC (dyadic variable productions)

I A → a (unit terminal productions)

Conversion:

1. Ensure that start variable doesn’t appear on the right hand side
of any rule (if it does, exchange it by the productions of S).

2. Remove all epsilon productions except from start variable (e.g.:
A → ε|a|b|AB becomes A → a|b|AB|B etc)

3. Remove all unit variable productions of the form A → B.

4. Add new variables and dyadic (2) variable rules to replace non-
dyadic or non-variable productions.

2.2 Pushdown Automata (PDA) [2/21]

Definition: A pushdown automaton is a 6-tuple M = (Q,Σ,Γ, δ, q0, F)
with

I Q (states), Σ (input alphabet), q0 (start state), F (accept states)
are the same as for FA

I Γ is the stack alphabet

I δ, for a given state, input letter and stack letter gives an output
letter and a stack replacement:

δ : Q× Σε × Γε → P (Q× Γε)

5

Labeling convention:

pO x,y→z // qO

If at state p with input x and stack y, go to state q and replace y on
stack with z.

I x = ε: ignore input, don’t read
I y = ε: ignore top of stack and push z
I z = ε: pop y

2.3 Tandem Pumping [2/46]

Tandem Pumping can prove that a language is not a context free gram-
mer. To prove that a language is a CFG, a CFG that creates the lan-
guage or an automaton (DFA, NFA or REX) that accepts it can be
given.

2.4 Transducer [2/50]

I A finite state transducer (FST) is a type of finite automaton
whose output is a string instead of accept or reject.

I Each transition is labeled with two symbols a/b where a is the
input symbol (as for automata) and b the output symbol.

2.5 Turing Machine [2/52]

Definition A Turing machine (TM) is a 7-tuple M = (Q,Σ,Γ, δ, q0, qacc, qrej)
with

I Q (states), Σ (input alphabet), q0 (start state) are the same as
for FA

I qacc and qrej are accept and reject states
I Γ is the tape aphabet, which necessarily contains the blank sym-

bol � and the input alphabet Σ
I δ is the transition

δ : (Q− {qacc, qrej)× Γ → Q× Γ× {L,R}}

where L, R is a left or right shift on the tape

A string s is accepted if the TM with s on the tape and the head on
the left most state eventually enters the accept state.

Labeling convention:

pO x→y|R// qO

If at state p with band input x, write y to band and go right on the
tape and to state q.

pO �|L // qO

If at state p with band input � (empty), leave � on band and go left
on the tape and to state q.

6

3 Specification Models

3.1 State Charts [3/2]

State charts are an extension of automata:

I notation:

ONMLHIJKA
event[condition]/reaction //ONMLHIJKB

� event: can be either internally or externally generated; logi-
cal function of multiple events is allowed

� condition: refers to values or variables that keep their value
until they are reassigned; multiple conditions possible

� the transition is enabled if event and condition is true
� reaction: assignment to variables and/or creation of events

I Superstates

� OR-superstates → exactly one of the substates is active,
when the superstate is active

� AND-superstates → all substates are active, when the su-
perstate is active

3.2 Petri Nets [3/22]

Definition: A Petri net is a bipartite, directed graph defined by
a tuple (S, T, F,M0), where

I S is a set of places pi

I T is a set of transitions ti

I F is a set of edges (flow relations) fi

I M0 : S → N is the initial marking

A transition may fire if all incoming egdes have the possibility to con-
sume a token. All places at outgoing edges will then get a token.
Which transition will fire is non-deterministic.

3.2.1 Analysis

Properties of petri nets [3/38]:

Reachability A marking Mn is reachable iff there exists a sequence
of firings {t1, t2, ..., tn} so that Mn = M0 · t1 · t2 · . . . tn

K-Boundedness A petri net is K-bounded if the number of tokens
in every place never exceeds K

Safety 1-boundedness: Every node holds at most 1 token at any time

Liveness starting from the current state, can we eventually fire any
transition?

7

Properties of transitions [3/39]: A transition t in a Petri net
(N,M0) is

dead if t cannot be fired in any firing sequence of L(M0)

L1-live if t can be fired at least once in some sequence of L(M0)

L2-live if, ∀k ∈ N+, t can be fired at least k times in some sequence
of L(M0)

L3-live if t apears infinitely often in some infinite sequence of L(M0)

L4-live (live) if t is L1-live for every marking reachable from M0

Coverability Tree [3/42]: The coverability tree is a tree of all
reachable token distributions. To denote an arbitrary number of to-
kens, a special symbol ω is used.

Algorithm to create the tree:

I label initial marking M0 as root and tag it as new

I while new markings exist, pick one, say M and do

� if M is identical to a marking on the way from the root to
M , mark it as old ; continue

� if no transitions are enabled at M , tag it as deadend
� for each enabled transition t at M do

? obtain marking M ′ = M · t
? if there exists a marking M ′′ on the way from the root to

M s.t. M ′(p) ≥ M ′′(p) for each place p and M ′ 6= M ′′,
replace M ′(p) with ω for p where M ′(p) > M ′′(p)

? introduce M ′ as a node, draw an arrow with label t from
M to M ′ and tag M ′ as new

Results from the Coverability Tree T :

I the net is bounded iff ω does not appear in any node label

I the net is safe if only 0 and 1 appear in the node labels of T

I a transition t is dead iff it does not appear as edge in T

I if M is reachable from M0, then there exists a node M ′ s.t. M ≤
M ′ (necessary but not sufficient)

I for bounded petri nets, this tree is also called reachability tree;
it contains all reachable markings

I deadlocks are possible if at lease one node is labeled with dead-
end

Incidence Matrix: The incidence matrix A describes the token-
flow according for the different transitions:

I Aij = gain of tokens at node i when transition j fires

I in other words, A is a matrix with a row for each place and and
column for each transition; −n denotes an outgoing transition of
capacity n; +n denotes an incoming transition of capacity n

8

I a marking M is written as a column vector

I the firing vector ui describes the firing of transition i and consists
of all 0, except for the i-th position, where it has a 1

I a firing of transition ti at with a marking Mk is written as

Mk+1 = Mk + A · ui

Reachability:

I a marking Mk is reachable from M0 if there is a sequence of
transitions {t1, .., tk} such that Mk = M0 · t1 · ... · tk

I written with the incidence matrix:

Mk = M0 + A

k∑
i=1

ui

this can be rewritten as

Mk −M0 = ∆M = A · ~x

I if Mk is reachable, this equation must have a solution where all
components of ~x are positive integers (necessary but not suffi-
cient)

3.2.2 Extensions [3/52]

I weighted edges [3/30]

� each edge fi has an associated weight W (fi)
� transition is active if each place pi connected through incom-

ing edge fi contains at least W (fi) tokens
� new tokens are generated based on weight of edges
� still a regular petri net

I finite capacity [3/31]

� each place pi can hold K(pi) tokens at most
� to remove this constraint for p, add a complementary place

p′, in way that the number of tokens in p and p′ together is
always K(p)

� still a regular petri net

I colored petri nets: token carry values (colors)

� can be transformed to regular petri net

I continuous petri net: token number can be real

� can not be transformed to regular petri net

I inhibitor arcs: enable transition if a place contains no tokens

� can not be transformed to regular petri net

9

4 Stochastic discrete event systems

4.1 Basics [4/5]

→ see other summaries

4.2 Stochastic processes in discrete time [4/16]

4.2.1 Markov-Chain

I next state only depends on current state, not on past states

I use probability matrices (P) for description:

qt+1 = qt ∗ P

qt = q0 ∗ P t

(sanity check: row sums have to be 1)

I transition times (erwartete Übergangszeiten)

hij = 1 +
∑

k:k 6=j

pikhkj

(if the expectation values hij and hkj exist)

I arrival probabilities (Ankunftswahrscheinlichkeiten)

fij = pij +
∑

k:k 6=j

pikfkj

I stationary analysis [4/38]

� bevaviour for t →∞
� a vector π with πj ≥ 0 and

∑
j∈S πj = 1 is called a stationary

distribution of the markov chain with transition matrix P ,
if π = π · P

� the stationary distribution π is an Eigenvector of P with
Eigenvalue 1

� TI
? eigvl(P): eigenvalues
? eigvc(PT): eigenvectors in columns
? eigvc(PT)T[2]: second eigenvector as row vector
? ans(1)/rownorm(ans(1)): rescale to element sum=1

4.3 Stochastic processes in continuous time [4/50]

4.3.1 Distributions

(from WahrStat summary)

I Gleichverteilung auf [a, b], a < b

10

� Dichte

fa,b(x) =
{

1
b−a , x ∈ [a, b]
0, x /∈ [a, b]

� Verteilungsfunktion

Fa,b(x) =

0, x ≤ a

x−a
b−a , a ≤ x ≤ b

1, x ≥ b

� E[X] = a+b
2

� Var[X] = (b−a)2

12

I Normalverteilung mit Parametern µ ∈ R, σ > 0:

� Dichte:

fm,σ(x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
, x ∈ R

� E[X] = µ

� Var[x] = σ2.
� Die Zufallsvariable Z mit Verteilung N(µ, σ) (Normalverteilung

mit Parametern µ, σ) enstpricht der Zufallsvariablen Z−µ
σ

mit Verteilung N(0, 1) (nützlich bei Verwendung einer Tabelle).

I Exponentialverteilung mit Parameter λ > 0:

� Dichte:

fλ(x) =
{

λe−λx, x ≥ 0
0, sonst

� Verteilungsfunktion:

Fλ(x) =
∫ x

−∞
fλ(u)du =

{
0, x ≤ 0

1− e−λx, x > 0

� E[X] = 1
λ

� Var[X] = 1
λ2

� sind X1, .., Xn exponentialverteilt mit Parametern λ1, .., λn,
so ist das Minimum min(X1, .., Xm) exponentialverteilt mit
Parameter λ = λ1 + ... + λn

4.3.2 Markov-chain in countinuous time [4/57]

I residence probabilites (?) (Aufenthaltswahrscheinlichkeiten) [4/62]

� start distribution q(0): qi(0) = Pr[X(0) = i] for i ∈ S (S:
states)

� distribution at time t: qi(t) = Pr[X(t) = i] for i ∈ S

� change of residence probabilities:

d
dt

qi(t)︸ ︷︷ ︸
Aenderung

=
∑
j:j 6=i

qj(t) · vj,i︸ ︷︷ ︸
Zufluss

− qi(t) · vi︸ ︷︷ ︸
Abfluss

11

? not easy to solve

? for a stationary distribution,
d
dt

qi(t) = 0 must hold

? for t → ∞, we get a linear equation system, that must
be solved by a stationary distribution π:

0 =
∑
j:j 6=i

πj · vj,i − πi · vi

? see [4/65] for an example with two states

4.3.3 Kendall-notation X/Y/m for queues [4/68]

I X stands for the distribution of the time between two incoming
jobs

I Y stands for the distribution of the job processing time (without
waiting time)

I m is the number of servers

I distributions are:

� D: deterministic (fixed time)
� M : memoryless (exponential distribution)
� G: general (something else)

4.3.4 M/M/1-queues [4/70]

I arrival time distances and processing time exponentially distributed
with parameter λ resp. µ

I traffic density: ρ =
λ

µ

I model with a Markov-chain in continuous time

� states: number of jobs in system
� state set: S = N0

� transit rate from i to i + 1 is λ

� transit rate from i > 0 to i− 1 is µ

I

?>=<89:;0
λ **?>=<89:;1
µ

jj
λ **?>=<89:;2
µ

jj
λ **?>=<89:;3
µ

jj
λ

&& ...
µ

ii

I stationary distribution [4/71]

� for ρ ≥ 1: no stationary solution, queue grows infinitely
� for ρ < 1: stationary distribution π with πk = (1− ρ)ρk for

k ≥ 0. Average server load (Auslastung): 1− π0 = ρ

� expected number of jobs in the system (queue+server):

N =
λ

µ− λ
=

ρ

1− ρ

12

� average response time:

T =
N

λ
=

1
µ− λ

� average waiting time without handling time:

W = T − 1
µ

=
ρ

µ− λ

� average number of jobs in queue:

NQ = λW =
ρ2

1− ρ

I generalisation of M/M/1-queue: see [4/87]

4.3.5 Little’s Law [4/75]

Definitions:

I N(t): number of jobs in the system (queue+server) at time t

I α(t): number of jobs that arrived in interval [0, t]
I Ti: response time for job i (waiting+handling)

Average values at time t:

Nt =
1
t

∫ t

0

N(τ)dτ, λt =
α(t)

t
, Tt =

∑α(t)
i=1 Ti

α(t)

Limit for t →∞:

N = lim
t→∞

Nt, λ = lim
t→∞

λt, T = lim
t→∞

Tt

If these limits exists and limt→∞
β(t)

t exists and equals λ (β(t) is the
number of finished jobs in interval [0, t]), then Littles Law tells us:

N = λ · T

(this holds for strategies other than FCFS as well)

4.3.6 Time-Sharing

see[4/83]

4.3.7 M/M/1-queue with limited (to n) number of wait-
ing spaces

I see [4/88]
I stationary distribution for waiting spaces:

π0 =
1∑n

i=0 ρi
=

{
1

n+1 forρ = 1
1−ρ

1−ρn+1 otherwise

πk = ρk · π0 for 1 ≤ k ≤ n

13

4.3.8 M/M/m-System

I see [4/90]

I equilibrium if ρ =
λ

mµ
< 1

I stationary distribution for waiting spaces:

π0 =
1∑m−1

k=0
(ρm)k

k! + (ρm)m

m!(1−ρ)

πk =

{
π0 · λk

µk·k!
= π0 · (ρm)k

k! for 1 ≤ k ≤ m

π0 · λk

µkm!mk−m = π0 · ρkmm

m! for k ≥ m

I probability PQ that an incoming job has to wait

PQ =
(ρm)m/(m!(1− p))∑m−1
k=0

(ρm)k

k! + (ρm)m

m!(1−ρ)

(for ρ =
λ

mµ
< 1)

I expectation value for number of jobs in queue

NQ = PQ · ρ

1− ρ

I average wait time

W =
NQ

λ
= PQ · ρ

λ(1− ρ)

I average response time

T = W +
1
µ

=
PQ

mµ− λ
+

1
µ

I average number of jobs in the system

N = λT =
ρPQ

1− ρ
+ mρ

4.3.9 M/M/m/m-System

I see [4/94]

I m servers, at most m jobs

I stationary distribution

π0 =
1∑m

k=0

(
λ
µ

)k
1
k!

πm =

(
λ
µ

)m
1

m!∑m
k=0

(
λ
µ

)k
1
k!

14

5 Worst-Case Event Systems [5]

5.1 Competitive Analysis

An online algorithm A is called c-competitive if for all finite input
sequences I it holds that

costA(I) ≤ c · costopt(I) + k

where k is an input-independant constant. If k = 0, A is called strictly
c-competitive.

5.2 Greedy Algorithm

A greedy will always choose the local optimum in the (most often false)
hope to find the global optimum.

15

