
Discrete Event Systems – R. Wattenhofer / K. Lampka 3/95

Where are we?

• SDL and MSC

• Petri Nets
– Notation

– Behavioral Properties

• Symbolic Analysis methods of finite models

• Introduction to model checking

• Timed automata (real-time)
– Notation

– Semantics

– Analysis

�

�

�

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/96

Model Checking (at glance)

• Model checking ist ein Verfahren zur vollautomatischen Ueberpruefung
ob ein Systemmodell eine gegebene Eigenschaft erfüllt.

• Das Verfahren ist vollautomatisch, da es keiner Benutzerinteraktion
bedarf, --im Gegensatz zu einigen deduktiven Verfahren, wie bspw.
interaktives Theorembeweisen.

• Automatisierung setzt Berechnung voraus, was wiederum eine mathe-
matische Formulierung des Problems bedingt. D.h. Systembeschreibung
M und zu überprüfende Eigenschaft φ müssen mathematisch interpre-
tierbar sein, so dass eine rechnergestützte Ueberprüfung, ob M ein
Modell, also eine Realisierung von φ darstellt, moeglich ist.

• Die Systembeschreibung erfolgt formal, d.h. durch eine hochsprachliche
Modellspezifikationsmethode oder direkt als ein beschriftetes Transitions-
system. Letzteres muss hierbei nicht notwendigerweise endlich sein,
jedoch eine endlich Repräsentation besitzen, bspw. durch ein Quotienten-
transitionssystem (siehe Regionengraph im Falle von TA).

• Die nachzuweisende Eigenschaft ist dann durch eine temporal-logische
Formel oder durch einen Beobachtungsautomaten anzugeben.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/97

low-level system model,
e.g. as LTS (states anno-
tated with propositions)

low-level description of
req., e.g. as NFA or NBA

Model Checking: Automatic verification of system behaviours

Model Checking AlgorithmsNO YES

requirements real system

high-level system model,
e.g. a PN, state chart,…

high-level description of.
req. by a temporal logic

combined representation,
cross-product

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/98

Temproal logics, important remarks

• Temporal extensions of propositional – or predicate logics by modalities
have been found very useful for specifying requirements to be verified.

• The elementary modalities referring to the infinite behavior of reactive
systems are

– ◊ eventually (eventually in the future)

– □ always (now and forever)

• Temporal logics are time abstract, i.e the above modalities allow ordering
of state labels / event labels, but not a specification of state residence times
or transition duration, as expected for real-time behaviors. However, real-
time extension due exist, but will not be covert here.

• Time can be viewed as linear or branching, i.e. one either associate a
single succesor moment for each instant in time or reasons over all
alternative concurses, where in the latter case one obtain path structures
and in the latter case tree structures to reason about.

• The discussion in this lecture is limited to linear time logics.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/99

Model Checking: Historic development

• In the late 70ties Pnueli proposed the usage of temporal logics and

related modal logics for the verification of complex computer

systems.

• Two early contenders in formal verifications were Linear Temporal

Logic (a linear time logic by Amir Pnueli and Zohar Manna) and

Computation Tree Logic, a branching time logic by Edmund Clarke

and E. Allen Emerson.

• Pioneering work in the model checking of temporal logic formulae

was done by E. M. Clarke and E. A. Emerson in 1981 and by J. P.

Queille and J. Sifakis in 1982.

• Clarke, Emerson, and Sifakis shared the 2007 Turing Award for

their work on model checking

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/100

Linear Time Properties (Definitions)

• Via state space exploration high-level models can be transformed into

labelled transition Systems (LTS).

• Extending earlier definition we assume that each state of the LTS is labelled

by some set of atomic propositions.

• Thus we define a LTS as follows: A LTS is a tuple

: is the set of reachable states

: is the set of initial states

: is the set of activity/action labels

: is a transition relation

: is the set of atomic propositions

: is the state labelling function

• In the following we emphasize a state-based approach, thus the transition

labels are ignored, but also action-based approaches exisit.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/101

Linear Time Properties (Definitions)

getCoin

decide

tea coffee

select

pay

giveCoffe

giveTea

(1,0,0,0)

(0,0,0,1)

(0,1,0,0)

(0,0,1,0)

A PN specifying a

breverage vending machine

The underlying LTS, we omitted the act.-labels

giveCoffe
giveCoffe

getCoin

decide
decide

pay

select

coffeetea

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/102

Linear Time Properties (Definitions)

• For each state s of a LTS TS one may define a post- and a preset:

• These sets can be extended to the level of input sets:

• and to the transitive closures

• We have

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/103

Linear Time Properties (Definitions)

• A LTS TS is denoted as deadlock-free iff ∀ s ∈ S : Post(s) ≠ ø.

• A finite/infinite trace of a deadlock-free LTSTS is defined by a finite/infinite

path as follows:

• Thus a trace of an LTS is a finite/infinite word over the alphabet 2
AP

• Traces can now be extended to sets of traces

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/104

Linear Time Properties (Definitions)

• A finite path fragment of a LTS TS is a finite sequence

• A infinite path fragment of trace of a LTS TS is a infinite sequence

• A maximal path fragment is an infinite p.f. or a finite p.f. ending in a

deadlock state

• An initial path fragment is a p.f. starting in an initial state of the LTS

• A path of a LTS TS is an initial maximal p.f..

• Let Paths(TS) denote the set of all paths of TS and let Paths
fin

(TS)

denote the set of all finite paths of TS .

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/105

Linear Time Properties (Definitions)

• The LTS of the breverage

vending maschine: pay

tea

select

coffee

giveCoffe
giveCoffe

getCoin

decide
decide

instead of state vectors,

each state is labelled by

the identifier of the

marked place on the PN

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/106

Linear Time Properties

• A linear time (LT) property can be seen as the role-model trace that
a (L)TS TS should exhibit, i.e. it is defined as requirement over all

words over AP of TS

• A LT prop. over the set of atomic propositions is a subset of

which is the infinite concatenation of words 2AP

• Remark: Solely infinite words matter, since we consider TS which
do not have terminal states, i.e. which are deadlock-free

• Let P be a LT property and let TS be a TS (without terminal states):

– TS ⊧ P ⇔ Traces(TS) ⊆ P (TS satisfies P iff the set of all traces of TS is included in

the set of all words induced by P)

– s ⊧ P ⇔ Traces(s) ⊆ P (a state s satisfies P iff the set of all traces starting in s is

included in the set of all words induced by P)

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/107

What are the requirements to be verified ? (from intro)

1. Safety: A safety property to be verified asserts that a system under

analysis never reaches a (set of) dedicated state, e.g. like error

states, or in particular a deadlock. The mutual exclusion property is

one of the most prominent examples of a safety property.

(constraint on finite behaviour)

2. Liveness or progress: A liveness property guarantees that a

system under analysis is executing a (set) of dedicated activities

infinitely often (constraint on infinite behaviour)

At first we will look at so called state invariants. A state

invariant requires that a property P holds for all reachable

states!

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/108

Safety properties and Invariants

• An LT prop. P inv over AP is an invariant if there is a propositional

logic formulae Ψ over AP s.t.

• Ψ is called a invariant condition of P inv and Ai are the atomic

propositions of state i

Remark:

The condition Ψ has to be fulfilled by all initial states and its satisfaction is

invariant under all transitions in the reachable fragment of TS

• How can we check this?

DFS for generating LTS of high-level model and

check if Ψ holds for each state

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/109

Safety properties

• Some safety properties can not be verified by considering the set of

reachable states only. But, infinite traces violating such properties

have a finite prefix, where the violation takes place, i.e. no infinite

word with such a bad prefix satisfy the property.

• An LT prop. P safe over AP is called a safety property if for all words

there exists a finite prefix

Remark:

• Any such finite word is denoted bad prefix

• A safety property is a property the violation of which appears in a finite

number of steps

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/110

Safety properties (Example)

(1,0,0,0)

(0,0,0,1)

(0,1,0,0)

(0,0,1,0)

• For the breverage vending machine

the number of inserted coins must

always be at least the number of

dispensed drinks.

Bad prefixes are:

ø {pay}{drink}{drink}, ø {pay}{drink}ø{pay}{drink}{drink}, etc.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/111

Safety properties

• For a TS TS without terminal states and a safety property P safe over

AP we have:

How-can the check such properties?

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/112

Model checking regular safety properties

• A safety property P safe over AP is denoted as regular safety

property if its set of bad prefixes constitutes a regular language over
2AP .

• Every invariant is a regular safety property: Let Ψ be the state

condition to be fulfilled by Reach(s). Then the language of bad

prefixes consists of the word

Such languages can be characterized by

Ψ*(¬Ψ)true*
which is a regular expression

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/113

Model checking regular safety properties

AP := {a,b} Ψ := a ∨ ¬b

• Ψ stands for the regular expresion {} ∨ {a} ∨ {a,b}

• ¬Ψ stands for the regular expression {b}

• true stands for {},{a},{a,b},{b}

• The bad prefixes over the state condition (a ∨ ¬b) are given as

E = ({} ∨ {a} ∨ {a,b})*{b}({}, ... ∨ {a,b} ∨ {b})*

• Thus the languag L(E) consists of all words A
1
A

2
…A

n
s.t. A

i
= b for 0 < i ≤ n,

since A ⊭ a ∨ ¬b iff A = b.

• Since L (E) is a regular language, we can construct an accepting NFA

q
1

q
2

Ψ

¬Ψ

true

Ψ* true*(¬Ψ)

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/114

Model checking regular safety properties

• Idea

where A ist the automata accepting the minimal bad prefix of P
safe

• One proceeds as follows:

1. Construct product automaton TS ⊗ P :

2. Check whether no state <s,q> is reachable where q ∈ F holds (F is the
set of accepting or terminal states of A). Thus one needs simply to
check the state condition Ψ := ¬F for the product-automaton. This can
be done by a simple (naive) DFS reachabilty algorithm.

Now we can check regular safety properties by means of

invariants, referring to finite system behavior. Is this

sufficient?

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/115

Liveness properties

• An algorithm which does nothing fulfills a safety property. Liveness
or progress properties require that something good will happen in
the future, e.g. a set of transitions will be eventually taken.

• A LT property P live over AP is a liveness property whenever:

• ⇒ Thus a liveness property is an LT property P s.t. each finite

word can be extended to an infinite word that satiesfy P , such

properties are violated by infinite runs

Example (mutual exclusion from ex. class):

• each PN will eventually enter its critical section

• each PN will enter its critical section ∞-often

• each waiting PN will eventually enter its crit. section

Formally:

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/116

ω-regular languages: Languages over infinite words

• An ω-regular expression G over the alphabet ∑ has the form:

where n ≥ 1 and E
1
,..,E

n
,F

1
,…F

n
are regular expressions over ∑ s.t. ε

∉ L(F
i
) for all 1 ≤ i ≤ n. The semantics of a ω-regular expression G is

a language of infinite words:

• where L(E) ⊆ ∑ω denotes the language of finite words induced by a
regular expression E.

• A language L(E) ⊆ ∑ω is called ω-regular if L ⊆ Lω(G) for some ω-

regular expression G over the alphabet ∑ holds.

• ω-regular languages are closed under union, intersection and
complement, e.g.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/117

ω-regular properties

• Automata accepting ω-regular languages are denoted as ω-

Automata, the Non-deterministic Buechi Automaton (NBA) is one of

the simplest ω-Automata.

• The concept of ω-regular languages is very important, most relevant
LT properties are ω-regular, thus they can be verified by employing

the NBA.

• LT porperty over AP is called ω-regular if P is an ω-regular language

over the alphabet 2AP.

• Example: AP := {a,b}, the invariant Pinv induced by the proposition Ψ :=

a ∨ ¬b.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/118

Non-deterministic Buechi Automaton

: is the set of states : is an alphabet

: is the set of initial states

: is the transition function, which induces:

: is the set of accepting or final state, denoted as acceptance set

• A run is denoted as accepting if

• The accepte language of A is the ω-regular language

• A run addresses an infinite sequence of states

in A s.t. q
0

∈ d
0

and

which is given by

• A non-deterministic Buechi Automaton (NBA) A is a tuple:

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/119

q
2

Non-deterministic Buechi Automaton

• cω has only one run, namely q1q1q1q1…. = q1
ω since q1 ∉ Y this run is

a not accepting one.

• abω yields the run q1q2q3q3…. = q1q2q3
ω since q3 ∈ Y and we visit q3

∞-often this run is accepting.

• What is about (abb)ncω ?

• What is the ω-regular expression defining the accepting language of

A ?

q
1

q
3

c

a

b

b

b

c*ab(b+ + bc*ab)ω

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/120

Model checking ω-regular properties

• Let TS be a finite TS without terminal states over AP and let P be an

ω-regular property over AP. Furthermore let A be a non-blocking

NBA, i.e. δ(q, A) ≠ ø ∀ q ∈ Q and ∀ A ∈ ∑), that accepts

It follows:

• P
pers

is a persistence property. Such a property is an LT property
which requires that some propositional logic formula Ψ “eventually
forever” holds, i.e. formally

• This gives, that infinite behaviors can be verified by persistence

properties on the product automaton. How-do we do this?

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/121

Model checking ω-regular properties

• To check if the high-level model fulfills a persitence property P over

a propositional logic formula Ψ, we must check if there exists cycle
containing a ¬Ψ-state within the product automaton TS ⊗ A.

• If this is the case one can conclude TS ⊭ P .

• Formally:
Let TS be non-terminal finite TS over TS, Ψ a propositional formula
over AP and Ppers the persitence property “eventually forever Ψ”.

Then, the following statements are equivalent:

• Such states can be found by nested-DFS algorithm, the path to

such a state automatically provides the counter example

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/122

Model checking ω-regular properties (at glance)

• Construct product automaton TS ⊗ A :

• where A represents the negated property

• Within the product automaton we check if there is a state <s,q> ⊭ Ψ and if

this state is part of a cycle. This gives for that we have a

counter example that “eventually forever no accept state” holds.

• Thus we have a run, where ¬P holds forever

• We can conclude TS ⊭ P

• Question: Why can we not simply check for a cycle containing acceptance
states of the original ω-regular property?

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/123

Linear Temporal Logic

• Now (finally) we have the armamentarium for verifying properties

specified by a temporal logic, here LTL.

• LTL-formuale over the set of AP atomic propositionsare formed as

follows:

where O is the next-operator and U is the until-operator.

• Intuitive semantics of temporal modalities

a arbitrary arbitraryarbitrary

atomic prop. a

arbitrary
arbitraryarbitrary

next step: Oa

a ∧ ¬b arbitrary

until: aUb

a

a ∧ ¬b b

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/124

Linear Temporal Logic

• The until operator allows us now to define the elementary modalities

until-operator.

• Intuitive semantics of temporal modalities

arbitrary

eventually: ◊ a

a

always: □a

a

¬a ¬a a

a a

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/125

Equivalence rules for LTL

• Duality law

• Distributive law

• Expansion law

• ……………

{a} {b}

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/126

low-level system model,
e.g. as LTS (states anno-
tated with propositions)

low-level description of
LTL formula as NBA

Model Checking: Automatic verification of system behaviours

NO

YES

requirements real system

high-level system model,
e.g. a PN, state chart,…

Negation of property:

LTL-formula ¬ φ

+ counter-

example

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/127

Symbolic model checking (at glance)

• State-of-the-art

– Transition relation (TR) can be represented by BDDs, requiring

complex procedures for deriving BDD from high-level model

descriptions.

– NBA for representing negated property to be verified are small,

can thus easily be transformed into a BDD-based representation

– BDD-manipulating algorithms allow the execution of MC

Depending on the modelled system BDDs may explode in the number of

allocated nodes (add-function y := x + p)

• New trends: SAT-Solvers have shown to be of value in such cases

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/128

Beyond BDDs: SAT-Solvers (at glance)

• Satisfiability: Does there exists an assignment to the variables of a

formula α of propositional logics, so that the formula evaluates to true

• 3-SAT: In general this problem is NP-complete (Cook 1972)

=> One may not expect always efficient computations. But in practice

SAT-solver have shown to be very powerful, outperform BDDs

• Employing SAT-based MC:

– Encode TR as boolean formula (unfolding of loops, each step in TR

is encoded by a new set of variables, k-steps within TR

– Encode properties to be checked as boolean equation

– Check if the obtained overall formula is satisfiable

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/129

Beyond verification of functional properties

• Probabilistic/Stochastic MC: System descpritions and formulae to be verified

are extended with propabilities or intervals thereof, e.g. pCTL:

• Timed extensions have been developed: allowing the correctness of

properties not only functional and quantiatively, but real-time-wise, e.g.

Timed CTL model checking for timed systems, i.e. for systems specified by

Timed Automata.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/130

Where are we?

• SDL and MSC

• Petri Nets
– Notation

– Behavioral Properties

• Symbolic Analysis methods of finite models

• Introduction to model checking

• Timed automata (real-time)
– Notation

– Semantics

– Analysis

�

�

�

�

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/131

Introduction

Correctness in time-critical systems depends on the correctness
of the produced output as well as on its availability just in time.

Functional
behaviour

(qualitative)

Timed
behaviour

(quantitative)

Correctness
of system

• SDL: Time via timer signals or continuous signal. Re-action depends
on position of timer signal in input-queue and/or on scheduling of
processes ⇒ uncoordinated delay !

• PN: time does not exists => standard extension Timed PN (~TA)

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/132

Timed Automata (Alur, Dill ’91)

Informally speaking:

• TA is a program graph the variables of which are clocks.

• The value of clocks serve as conditions for taking an edge, emanating

from the current state (location).

• TA can be used to reason about timed, functional or combined

properties of systems

• Enables description of very complex systems, e.g. scheduling with pre-

emption, etc.

• Compositional by construction: i.e. build system as network of TAs,,

communication via synchronization (= joint execution of dedicated

(enabled) transitions.).

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/133

Example: A simple switch

In a nutshell:

• A timed automaton TA is a directed action-labeled graph, which

is extended with non-negative clocks. Conditions imposed on

the clocks (time constraints) steers the execution of the TA.

• Time constraints may be associated with edges (guards) or

with locations (invariants)

Remark:

only invariants enforce

execution of transitions

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/134

Timed Automata (TA)

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/135

Example

• Each edge of a TA is equipped with an action-label

• a clock condition or guard

• a set of clocks to be reset, once the edge is taken.

• With the locations this yields the notation

What is the guard, the label, set of clocks?

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/136

Semantics of Timed Automata (1)

There are two ways for a TA to proceed:

1. Take the enabled transitions emanating from the current location

(=> discrete transitions)

2. Let time progress (=> delay transition)

=> This yields an (infinite) labelled transition system (LTS)

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/137

Multiple actions in zero time

• Transitions within TA (and their LTS) are instantaneous, i.e. they

happen in zero time units. The elapse of time takes only place in

locations (states)

⇒ At a single instant of time, several edges can be taken,

but each transition of the LTS refers to the execution of a

single action.

Example →

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/138

Example (2)

2 4 6 8

2

2 4 6 8

3

2

2

2 4 6 8

2

3

May happen afte
r x

 is 2

May happen afte
r x

 is 2,

has to
happen before x is 3

May happen if x
 is greater th

an 2

but smaller th
an 3

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/139

Semantics of Timed Automata (2)

=> Time is only spent in locations, transitions are time-less!

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/140

Example

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/141

Example

TS(Switch):

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/142

The LTS underlying a TA gives an infinite model of the system

=> To keep things analyzable, one considers therefore a finite

quotient of LTS, denoted as region graph

LTS: Finite semantics models for TA

Idea: Merge states satisfying

• the same clock constraints and

• from which “similar” time-divergent paths (= paths on

which time always progress) emanate

Requires definition of an equivalence class →

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/143

Idea:

1. Agree on integral part ⇒ clks same constraints

2. frac. part gives order of clks changing next

1. Integral part:

2. Fractional part:

Integral - and fractional parts of clocks

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/144

1) Clock valuations η, η’ are equivalent (η ≈ η’) iff

The region graph (1)

2) A clock region [η] is defined by

3) The state region [s] for

is given by

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/145

Example

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/146

Region transition system

Delay transition

Discrete transition

ETH FolienlayoutDiscrete Event Systems – R. Wattenhofer / K.

Lampka

3/147

Upper and lower bound on the number of regions

The region graph (2)

