

Inventory Tracking (Cargo Tracking)

- · Current tracking systems require lineof-sight to satellite.
- · Count and locate containers
- · Search containers for specific item
- · Monitor accelerometer for sudden motion
- · Monitor light sensor for unauthorized entry into container

Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/2

Rating

Area maturity

First steps

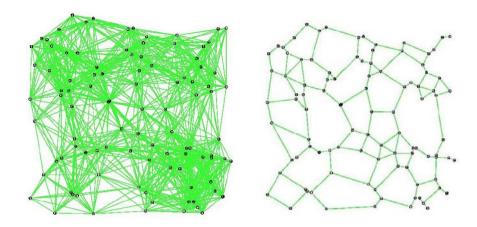
Practical importance

No apps

Mission critical

Text book

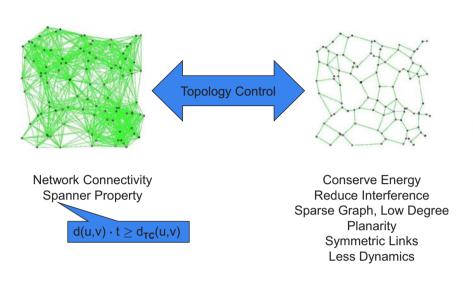
Theoretical importance


Not really

Must have

Overview - Topology Control

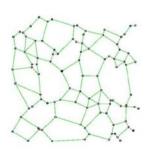
- · Gabriel Graph et al.
- · Practical Topology Control: XTC
- Interference


Topology Control

- Drop long-range neighbors: Reduces interference and energy!
- But still stay connected (or even spanner)

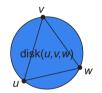
Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/5

Topology Control as a Trade-Off



Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/6

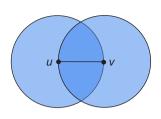
Gabriel Graph

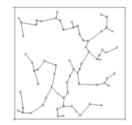

- Let disk(u,v) be a disk with diameter (u,v) that is determined by the two points u,v.
- The Gabriel Graph GG(V) is defined as an undirected graph (with E being a set of undirected edges). There is an edge between two nodes u,v iff the disk(u,v) including boundary contains no other points.
- As we will see the Gabriel Graph has interesting properties.

Delaunay Triangulation

- Let disk(*u*,*v*,*w*) be a disk defined by the three points *u*,*v*,*w*.
- The Delaunay Triangulation (Graph)
 DT(V) is defined as an undirected
 graph (with E being a set of undirected
 edges). There is a triangle of edges
 between three nodes u,v,w iff the
 disk(u,v,w) contains no other points.
- The Delaunay Triangulation is the dual of the Voronoi diagram, and widely used in various CS areas; the DT is planar; the distance of a path (s,...,t) on the DT is within a constant factor of the s-t distance.

Other planar graphs

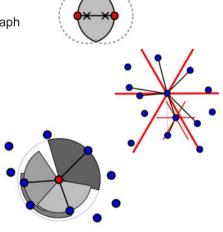

Do you know other Topologies?


Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/9

Other planar graphs

- Relative Neighborhood Graph RNG(V)
 - An edge e = (u,v) is in the RNG(V) iff there is no node w with (u,w) < (u,v) and (v,w) < (u,v).

- Minimum Spanning Tree MST(V)
 - A subset of E of G of minimum weight which forms a tree on V.


Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/10

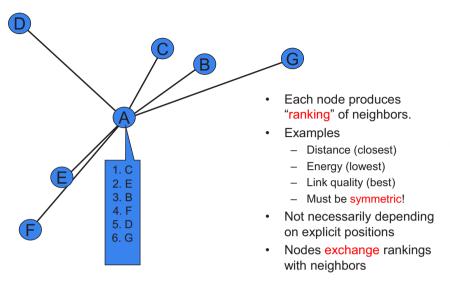
Properties of planar graphs

- Theorem 1: $MST(V) \subseteq RNG(V) \subseteq GG(V) \subseteq DT(V)$
- Corollary:
 Since the MST(V) is connected and the DT(V) is planar, all the graphs in Theorem 1 are connected and planar.
- Theorem 2: The Gabriel Graph contains the so called "minimum energy path" (for any path loss exponent $\alpha \geq 2$)
- Corollary: GG(V) ∩ UDG(V) contains the Minimum Energy Path in UDG(V)

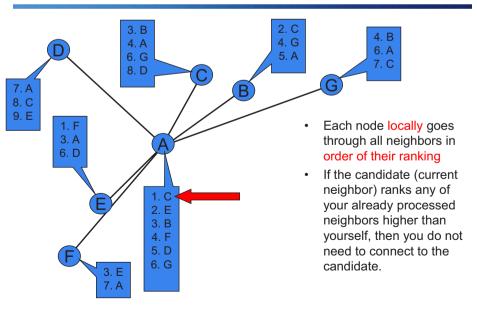
More examples

- β-Skeleton
 - Generalizing Gabriel (β = 1) and
 Relative Neighborhood (β = 2) Graph
- · Yao-Graph
 - Each node partitions directions in k cones and then connects to the closest node in each cone
- · Cone-Based Graph
 - Dynamic version of the Yao Graph. Neighbors are visited in order of their distance, and used only if they cover not yet covered angle

Lightweight Topology Control


 Topology Control commonly assumes that the node positions are known.

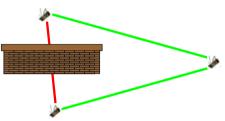
What if we do not have access to position information?


Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/13

XTC: Lightweight Topology Control without Geometry

Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/14

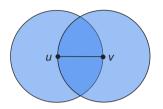
XTC Algorithm (Part 2)


XTC Analysis (Part 1)

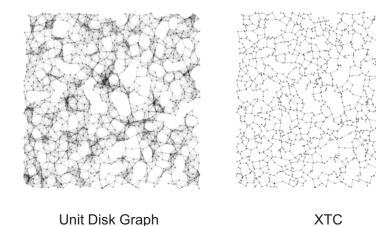
- Symmetry: A node u wants a node v as a neighbor if and only if v wants u.
- Proof:
 - Assumption 1) u → v and 2)/u ← v
 - Assumption 2) \Rightarrow ∃w: (i) w \prec_v u and (ii) w \prec_u v

Contradicts Assumption 1)

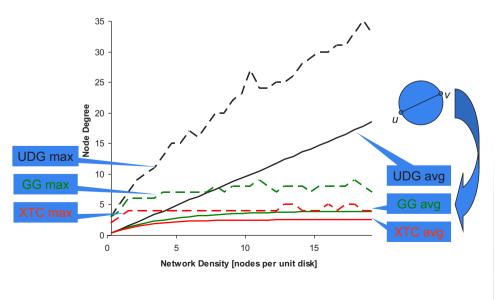
XTC Analysis (Part 1)


- Symmetry: A node u wants a node v as a neighbor if and only if v wants u.
- Connectivity: If two nodes are connected originally, they will stay so (provided that rankings are based on symmetric link-weights).
- If the ranking is energy or link quality based, then XTC will choose a topology that routes around walls and obstacles.

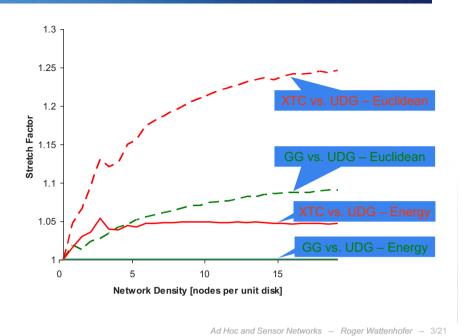
Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/17

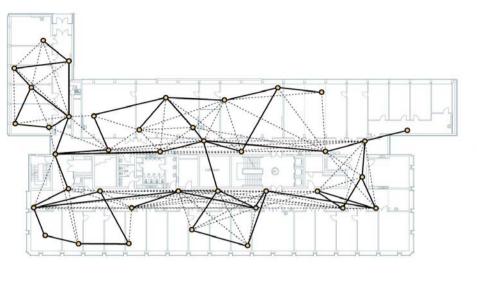

XTC Analysis (Part 2)

- If the given graph is a Unit Disk Graph (no obstacles, nodes homogeneous, but not necessarily uniformly distributed), then ...
- The degree of each node is at most 6.
- The topology is planar.
- The graph is a subgraph of the RNG.
- Relative Neighborhood Graph RNG(V):
 - An edge e = (u,v) is in the RNG(V) iff there is no node w with (u,w) < (u,v) and (v,w) < (u,v).



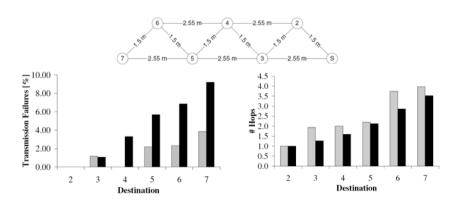
Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/18


XTC Average-Case

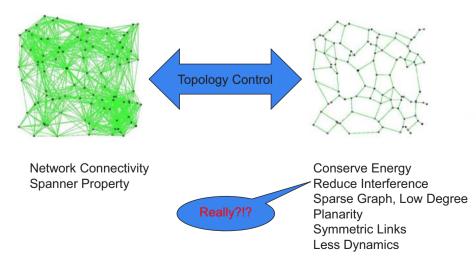

XTC Average-Case (Degrees)

XTC Average-Case (Stretch Factor)

Implementing XTC, e.g. BTnodes v3

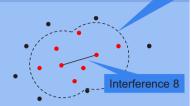


Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/22


Implementing XTC, e.g. on mica2 motes

· Idea:

- XTC chooses the reliable links
- The quality measure is a moving average of the received packet ratio
- Source routing: route discovery (flooding) over these reliable links only
- (black: using all links, grey: with XTC)


Topology Control as a Trade-Off

What is Interference?

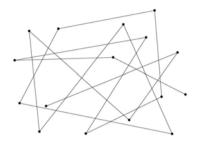
Exact size of interference range does not change the results

Link-based Interference Model

"How many nodes are affected by communication over a given link?"

Node-based Interference Model

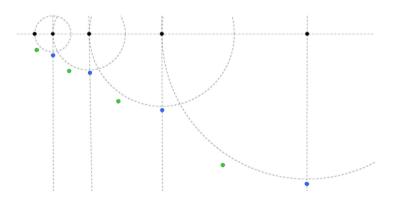
"By how many other nodes can a given network node be disturbed?"


- Problem statement
 - We want to minimize maximum interference
 - At the same time topology must be connected or spanner

Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/25

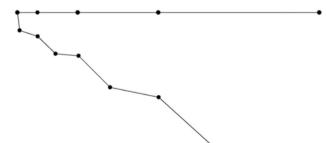
Low Node Degree Topology Control?

Low node degree does not necessarily imply low interference:



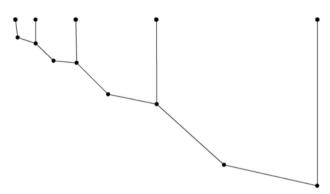
Very low node degree but huge interference

Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/26


Let's Study the Following Topology!

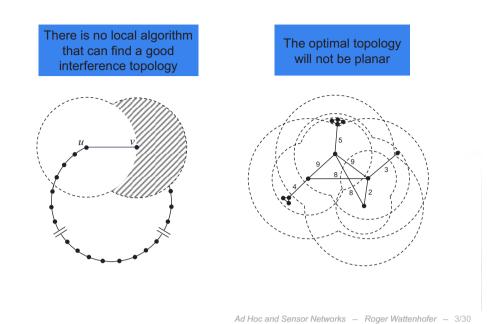
...from a worst-case perspective

Topology Control Algorithms Produce...


 All known topology control algorithms (with symmetric edges) include the nearest neighbor forest as a subgraph and produce something like this:

 The interference of this graph is Ω(n)!

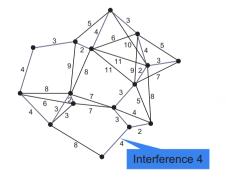
But Interference...


Interference does not need to be high...

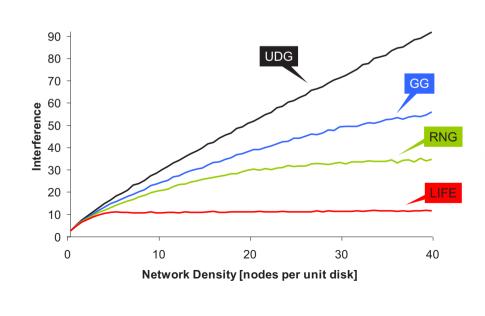
• This topology has interference O(1)!!

Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/29

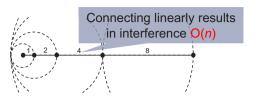
Link-based Interference Model


Link-based Interference Model

- LIFE (Low Interference Forest Establisher)
 - Preserves Graph Connectivity

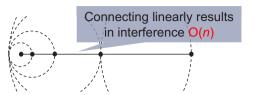

LIFE

- Attribute interference values as weights to edges
- Compute minimum spanning tree/forest (Kruskal's algorithm)

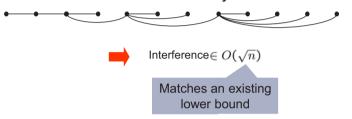

Average-Case Interference: Preserve Connectivity

Node-based Interference Model

 Already 1-dimensional node distributions seem to yield inherently high interference...


...but the exponential node chain can be connected in a better way

Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/33


Node-based Interference Model

 Already 1-dimensional node distributions seem to yield inherently high interference...

...but the exponential node chain can be connected in a better way

Ad Hoc and Sensor Networks - Roger Wattenhofer - 3/34

Node-based Interference Model

- · Arbitrary distributed nodes in one dimension
 - Approximation algorithm with approximation ratio in $O(\sqrt[4]{n})$

- Two-dimensional node distributions
 - Simple randomized algorithm resulting in interference $O(\sqrt{n \log n})$
 - Can be improved to $O(\sqrt{n})$

Open problem

- On the theory side there are quite a few open problems. Even the simplest questions of the node-based interference model are open:
- We are given n nodes (points) in the plane, in arbitrary (worst-case) position. You must connect the nodes by a spanning tree. The neighbors of a node are the direct neighbors in the spanning tree. Now draw a circle around each node, centered at the node, with the radius being the minimal radius such that all the nodes' neighbors are included in the circle. The interference of a node u is defined as the number of circles that include the node u. The interference of the graph is the maximum node interference. We are interested to construct the spanning tree in a way that minimizes the interference. Many questions are open: Is this problem in P, or is it NP-complete? Is there a good approximation algorithm? Etc.