
Ad Hoc and Sensor Networks Nicolas Burri X/1

TinyOS 2.x & nesC
Chapter X

Ad Hoc and Sensor Networks Nicolas Burri X/2

Sensor Nodes

System Constraints

Slow CPU

Little memory

Short-range radio

Battery powered

Ad Hoc and Sensor Networks Nicolas Burri X/3

Operating System Requirements

Measure real-world phenomena

Event-driven architecture

Resource Contraints

Hurry up and sleep!

Adapt to changing technologies

Modularity & re-use

Applications spread over many small nodes

Communication is fundamental

Inaccessible location, critical operation

Robustness

PermaSense Project

Pictures by

Jan Beutel

Ad Hoc and Sensor Networks Nicolas Burri X/4

TinyOS

TinyOS consists of a scheduler & graph of components

Ad Hoc and Sensor Networks Nicolas Burri X/5

Programming Model

Separate construction and composition

Programs are built out of components connected by interfaces

Two types of components:

Modules: Implement program logic

Configurations: Wire components together

Components use and provide interfaces

provide hooks for

component wiring

Interfaces are

bidirectional

Ad Hoc and Sensor Networks Nicolas Burri X/6

Programming Model

Interfaces contain definitions of

Commands

Events

Components implement the events (event handlers)

they use and the commands they provide

u
s
e
s

p
ro

v
id

e
s

can call commands,

must implement event handlers

can signal events,

must implement commands

Ad Hoc and Sensor Networks Nicolas Burri X/7

Programming Model

Components are wired together by connecting interface users with

interface providers

Commands flow downwards

Control returns to caller

Events flow upwards

Control returns to signaler

Commands are non-blocking

requests

command

event

Modular construction kit

command

Application

event

Communication

Abstraction

Radio Driver

Ad Hoc and Sensor Networks Nicolas Burri X/8

Concurrency Model

Coarse-grained concurrency only

Implemented via tasks

Tasks are executed sequentially by the TinyOS scheduler

- done by the programmer

Atomic with respect to other tasks (single threaded)

Longer background processing jobs

Events (interrupts)

Time critical

Preempt tasks

Short duration (hand off computation to tasks if necessary)

SSSS

watch out for

data races

Ad Hoc and Sensor Networks Nicolas Burri X/9

Memory Model

10 kB

Static memory allocation

No heap (malloc)

No function pointers

Global variables

One namespace per component

Local variables

Declared within a function

Saved on the stack

Conserve memory

Use pointers, copy buffers

bye-bye complex

data structures

Ad Hoc and Sensor Networks Nicolas Burri X/10

TinyOS Distribution

TinyOS is distributed in source code

nesC as programming language

Nested C (nesC)

Dialect of C

Embodies the structural concepts and execution model of TinyOS

Module, configuration, interface

Tasks, calls, signals

Pre-processor produces native C code

nesC limitations

No dynamic memory allocation

No function pointers

Ad Hoc and Sensor Networks Nicolas Burri X/11

configuration BlinkAppC{

}

implementation {

components MainC, BlinkC, LedsC;

components new TimerMilliC()

as Timer0;

BlinkC -> MainC.Boot;

BlinkC.BlTimer -> Timer0;

BlinkC.Leds -> LedsC;

}

nesC Hello World

module BlinkC {

uses interface Timer<TMilli>

as BlTimer;

uses interface Leds;

uses interface Boot;

}

implementation{

event void Boot.booted() {

call BlTimer.startPeriodic(1000);

}

event void BlTimer.fired() {

call Leds.led0Toggle();

}

}

Ad Hoc and Sensor Networks Nicolas Burri X/12

The End

Thanks to Pascal von Rickenbach for many of the slides

