Chapter 5

 Worst-Case Event DistribldtedCompution
Group Systems

Discrete Event Systems
Fall 2007

- Ski Rental
- Randomized Ski Rental
- Lower Bounds

- The TCP Acknowledgement Problem
- The TCP Congestion Control Problem
- Bandwidth in a Fixed Interval
- Multiplicatively Changing Bandwidth
- Changes with Bursts
- Many application domains are not Poisson distributed!
- sometimes it makes sense to assume that events are distributed in the worst possible way (e.g. in networks, packets often arrive in bursts)

Discrete Event Systems C. Stamm / R. Wattenhofer

Ski Rental Problem

- Expenses

- buying: 1 kFr
- renting: 1 kFr per month

Murphy's Law

- Scenario

If anything

- first rent it for z months, then buy it.
can go wrong,
- after u months you will lose your interest in skiing it will

2 cases:

$$
\begin{aligned}
& u \leq z \rightarrow \operatorname{cost}_{z}(u)=u k F r \\
& u>z \rightarrow \operatorname{cost}_{z}(u)=(z+1) k F r
\end{aligned}
$$

- If you are a clairvoyant, then ...
$\mathrm{u} \leq 1$ month \rightarrow just renting is better $\rightarrow \operatorname{cost}_{\mathrm{opt}}(\mathrm{u})=\mathrm{ukFr}$ $\mathrm{u}>1$ month \rightarrow just buying is better $\rightarrow \operatorname{cost}_{\text {opt }}(\mathrm{u})=1 \mathrm{kFr}$ $\rightarrow \operatorname{cost}_{\mathrm{opt}}(\mathrm{u})=\min (\mathrm{u}, 1)$

Discrete Event Systems

Competitive Analysis

- Definition

An online algorithm A is c-competitive if for all finite input sequences I

$$
\operatorname{cost}_{A}(\mathrm{I}) \leq \mathrm{c} \operatorname{cost}_{\mathrm{opt}}(\mathrm{I})+\mathrm{k}
$$

where k is a constant independent of the input.
If $\mathrm{k}=0$, then the online algorithm is called strictly c-competitive.

- When strictly c-competitive, it holds

$$
\frac{\operatorname{cost}_{\mathrm{A}}(u)}{\operatorname{cost}_{\mathrm{opt}}(u)} \leq c
$$

Randomized Ski Rental

- Deterministic Algorithm
- has a big handicap, because the adversary knows z and can always present a u which is worst-case for the algorithm
- only hope: algorithm makes random decisions
- Randomized Algorithm
- chooses randomly between 2 values z_{1} und z_{2} (with $z_{1}<z_{2}$) with probabilities p_{1} and $p_{2}=\left(1-p_{1}\right)$
$\operatorname{cost}_{A}(u)= \begin{cases}u & \text { if } u \leq z_{1} \\ p_{1} \cdot\left(z_{1}+1\right)+p_{2} \cdot u & \text { if } z_{1}<u \leq z_{2} \\ p_{1} \cdot\left(z_{1}+1\right)+p_{2} \cdot\left(z_{2}+1\right) & \text { if } z_{2}<u\end{cases}$
- Example
- $z_{1}=1 / 2, z_{2}=1, p_{1}=2 / 5, p_{2}=3 / 5$
$-\mathrm{E}[\mathrm{c}]=\operatorname{cost}_{\mathrm{A}} / \operatorname{cost}_{\text {opt }}=1.8$

What about choosing randomly between more than 2 values???

Randomized Ski Rental with infinitely many Values (1)

- Let $\mathrm{r}(\mathrm{u}, \mathrm{z})$ be the competitive ratio for all pairs of u and z
- We are looking for the expected competitive ratio $\mathrm{E}[\mathrm{c}]$
- Adversary chooses u with uniform distribution
$E[c]=\frac{\iint r(u, z) d z d u}{\iint d z d u}$
$=\frac{1}{2}+\int_{u=0}^{c} \int_{z=0}^{u} \frac{z+1}{u} d z d u$
$=1.75$

Randomized Ski Rental with infinitely many Values (2)

- Algorithm chooses z with probability distribution $p(z)$
- it chooses $p(z)$ such that it minimizes $E[c]$
- Adversary chooses u with probability distribution d(u)
- it chooses $\mathrm{d}(\mathrm{u})$ such that it maximized $\mathrm{E}[\mathrm{c}]$

$$
E[c]=\frac{\int_{0}^{1} \int_{0}^{u}(z+1) p(z) d(u) d z d u+\int_{0}^{1} \int_{u}^{1} u p(z) d(u) d z d u}{\int_{0}^{1} \int_{0}^{1} u p(z) d(u) d z d u}
$$

$$
\int p(z)=\int d(u)=1
$$

- This is a very hard task!
\rightarrow We should make the problem independent of the adversarial distribution $\mathrm{d}(\mathrm{u})$.

Randomized Ski Rental with infinitely many Values (3)

- Idea

Choose the algorithm's probability function $p(z)$ such that $\operatorname{cost}_{\mathrm{A}}(\mathrm{u}) \leq \mathrm{c} \operatorname{cost}_{\text {opt }}(\mathrm{u})$ for all u
\rightarrow adversarial distribution $\mathrm{d}(\mathrm{u})$ doesn't matter anymore

- $\operatorname{cost}_{\text {opt }}(\mathrm{u})=\mathrm{u}$ for all u between 0 und 1

$$
\begin{aligned}
& \int_{0}^{u}(z+1) p(z) d z+\int_{u}^{1} u \cdot p(z) d z \leq c \cdot u \\
& \text { with } \int_{0}^{1} p(z) d z=1
\end{aligned}
$$

- Having a hunch: the best probability function $p(z)$ will be an equality \rightarrow With $p(z)=\frac{e^{z}}{e-1}$ we have an algorithm that is $\frac{e}{e-1}$-competitive in expectation.

Can we get any better??? \rightarrow Lower Bounds

- Von Neumann / Yao Principle

Choose a distribution over problem instances (for ski rental, e.g. d(u)).
If for this distribution all deterministic algorithms cost at least c ,
then c is a lower bound for the best possible randomized algorithm.

- Ski Rental
- we are in a lucky situation, because we can parameterize all possible deterministic algorithms by $z \geq 0$
- choose a distribution of inputs with $\mathrm{d}(\mathrm{u}) \geq 0$ and $\int d(u)=1$
- Example
$d(u)=1 / 2$ for $0 \leq u \leq 1$ and $d(\infty)=1 / 2$
$\rightarrow \operatorname{cost}_{\mathrm{z}=0}(\mathrm{~d}(\mathrm{u}))=1$
$\operatorname{cost}_{\mathrm{z} \leq 1}(\mathrm{~d}(\mathrm{u})) \geq 1$
$\rightarrow \operatorname{cost}_{\mathrm{z}=1}(\mathrm{~d}(\mathrm{u}))=5 / 4 \quad \operatorname{cost}_{\mathrm{z}>1}(\mathrm{~d}(\mathrm{u}))>5 / 4 \quad \rightarrow \mathrm{c}=1$
$\rightarrow \operatorname{cost}_{\text {opt }}(\mathrm{d}(\mathrm{u}))=3 / 4$
$\rightarrow \mathrm{c} / \operatorname{cost}_{\mathrm{opt}}=4 / 3=1.33$

TCP: Transmission Control Protoco

- Layer 4 Networking Protocol
- transmission error handling
- correct ordering of packets
- exponential ("friendly") slow start mechanism: should prevent network overloading by new connections
- flow control: prevents buffer overloading
- congestion control: should prevent network overloading

Packet Acknowledgment

Sender

- Sequence number in packet header
- "Window" of up to N consecutive unack'ed packets allowed

send_base nextseqnum	already ack'ed
usable, not sent, not yet ack'ed	yet sent
not usable	

- ACK (n) : ACKs all packets up to and including sequence number n
- a.k.a. cumulative ACK
- sender may get duplicate ACKs
- timer for each in-flight packet
- timeout(n): retransmit packet n and all higher seq\# packets in window

The TCP Acknowledgment Problem

- Definition

The receiver's goal is a scheme which minimizes the number of acknowledgments plus the sum of the latencies for each packet, where the latency of a packet is the time difference from arrival to acknowledgment.

- Given
n packet arrivals, at times: $a_{1}, a_{2}, \ldots, a_{n}$
k acknowledgments, at times $t_{1}, t_{2}, \ldots, t_{k}$
latency $(\mathrm{i})=\mathrm{t}_{\mathrm{j}}-\mathrm{a}_{\mathrm{i}}$, where j such that $\mathrm{t}_{\mathrm{j}-1}<\mathrm{a}_{\mathrm{i}} \leq \mathrm{t}_{\mathrm{j}}$
- Minimize
$\left(k+\sum_{i=1}^{n} \operatorname{latency}(i)\right)$

- $z=1$ Algorithm is: Whenever a rectangle with area $z=1$ does fit between the two curves, the receiver sends an acknowledgement, acknowledging all previous packets.

The TCP Acknowledgment Problem: $\mathrm{z}=1$ Algorithm (2)

- Lemma
- The optimal algorithm sends an ACK between any pair of consecutive ACKs by algorithm with $z=1$.
- Proof
- For the sake of contradiction, assume that, among all algorithms who achieve the minimum possible cost, there is no algorithm which sends an ACK between two ACKs of the $z=1$ algorithm.
- We propose to send an additional ACK at the beginning (left side) of each z = 1 rectangle. Since this ACK saves latency 1 , it compensates the cost of the extra ACK.
- That is, there is an optimal algorithm who chooses this extra ACK.

The TCP Acknowledgment Problem: z=1 Algorithm (3)

- Theorem: The $z=1$ algorithm is 2 -competitive.

- Similarity to Ski Rental
- it's possible to choose any z
- if you wait for a rectangle of size z with probability $p(z)=e^{z} /(e-1)$ \rightarrow randomized TCP ACK solution, which is e/(e-1) competitive

Simple TCP Congestion Scenario

congestion

too many sources sending too much data too fast for network to handle

- two equal senders, two receivers
- one router with infinite buffer space and with service rate C

- large delays when congested
- maximum achievable throughput

Discrete Event Systems

- C. Stamm / R. Wattenhofer

The TCP Congestion Control Problem

- Main Question

How many packets per second can a sender inject into the network without overloading it?

- Assumptions
- sender does not know the bandwidth between itself and the receiver
- the bandwidth might change over time
- Model
- time divided into periods \{t \}
- unknown bandwidth threshold u_{t}
- sender transmits x_{t} packets

- Gain Function
$-x_{t} \leq u_{t} \rightarrow$ gain $_{t}=x_{t}$
$-x_{t}>u_{t} \rightarrow$ gain $_{t}=0$

Competitive Analysis (2)

- Definition

An online algorithm A is strictly c-competitive if for all finite input sequences I

$$
\begin{aligned}
& \operatorname{cost}_{A}(\mathrm{I}) \leq \mathrm{c} \operatorname{cost}_{\mathrm{opt}}(\mathrm{I}), \text { or } \\
& \mathrm{c} \operatorname{gain}_{A}(\mathrm{I}) \geq \operatorname{gain}_{\mathrm{opt}}(\mathrm{I}) .
\end{aligned}
$$

- The Dynamic Model
- algorithm: chooses a sequence $\left\{x_{t}\right\}$
- adversary: knows the algorithm's sequence and chooses a sequence $\left\{u_{t}\right\}$
- Problem
- Adversary is too strong: $\forall \mathrm{t}: \mathrm{u}_{\mathrm{t}}<\mathrm{x}_{\mathrm{t}} \rightarrow$ gain $_{\mathrm{A}}=0$
- Restrictions
- Bandwidth in a fixed interval: $u_{t} \in[a, b]$
- Multiplicatively changing bandwidth
- Changes with bursts

Bandwidth in a Fixed Interval: Randomized Algorithm

- Let's try the ski rental trick!
- For all possible inputs $u \in[a, b]$ we want the same competitive ratio:

$$
\mathrm{c} \text { gain }_{\text {Alg }}(\mathrm{u})=\text { gain }_{\mathrm{opt}}(\mathrm{u})=\mathrm{u}
$$

- Randomized Algorithm
- We choose $x=a$ with probability p_{a}, and any value in $x \in(a, b]$ with probability density function $\mathrm{p}(\mathrm{x})$, with $p_{a}+\int_{a}^{b} p(x) d x=1$.
- Theorems
- There is an algorithm that is c-competitive, with $\mathrm{c}=1+\ln (\mathrm{b} / \mathrm{a})$.
- There is no randomized algorithm which is better than c-competitive, with $c=1+\ln (b / a)$.
- Remark
- Upper and lower bound are tight.

Discrete Event Systems - C. Stamm / R. Wattenhofer

Multiplicatively Changing Bandwidth

- Preconditions
- adversary chooses u_{t+1} such that $u_{t} / \mu \leq u_{t+1} \leq \mu u_{t}$, with $\mu \geq 1$, e.g. 1.05
- algorithm knows u_{1} and μ
- Algorithm A_{1}
- after a successful transmission in period t, the algorithm chooses $x_{t+1}=\mu x_{t}$
- otherwise: $\mathrm{x}_{\mathrm{t}+1}=\mathrm{x}_{\mathrm{t}} / \mu^{3}$
- Theorem
- The algorithm A_{1} is $\left(\mu^{4}+\mu\right)$-competitive
- Algorithm A_{2}
- after a successful transmission in period t, the algorithm chooses $X_{t+1}=\mu x_{t}$
- otherwise: $x_{t+1}=x_{t} / 2$
- Theorem
- The algorithm A_{2} is (4μ)-competitive

Discrete Event Systems C. Stamm / R. Wattenhofer

