
Chapter 2

SMARTER

AUTOMATA
Discrete Event Systems

Fall 2007

Distributed

Computing

Group

Discrete Event Systems – R. Wattenhofer 2/2

Overview

• Motivation

• Context free grammars (CFG)

• Derivations

• Parse trees

• Ambiguity

• Pushdown Automata

• Stacks and recursion

• Grammar Transforms

• Chomsky normal form

• CFG � PDA

• Context Sensitive Grammars

• PDA Transforms

• Pure Push and Pop machines

• PDA � CFG

• Context Free Pumping

• Transducers

• Turing Machines

• Mind-Body Problem

Discrete Event Systems – R. Wattenhofer 2/3

Motivation

• Why is a language such as {0n1n | n ≥ 0} not regular?!?

• It’s really simple! All you need to keep track is the number of 0’s…

• In this chapter we first study context-free grammars

– More powerful than regular languages

– Recursive structure

– Developed for human languages

– Important for engineers (parsers, protocols, etc.)

Discrete Event Systems – R. Wattenhofer 2/4

Motivating Example

• Palindromes, for example, are not regular.

• But there is a pattern.

• Q: If you have one palindrome, how can you generate another?

• A: Generate palindromes recursively as follows:

– Base case: ε, 0 and 1 are palindromes.

– Recursion: If x is a palindrome, then so are 0x0 and 1x1.

• Notation: x � ε | 0 | 1 | 0x0 | 1x1.

– Each pipe (“|”) is an or, just as in UNIX regexp’s.

– In fact, all palindromes can be generated from ε using these rules.

• Q: How would you generate 11011011?

Discrete Event Systems – R. Wattenhofer 2/5

Context Free Grammars (CFG): Definition

• Definition: A context free grammar consists of (V, Σ, R, S) with:

– V: a finite set of variables (or symbols, or non-terminals)

– Σ: a finite set set of terminals (or the alphabet)

– R: a finite set of rules (or productions)
of the form v � w with v∈V, and w∈(Σε∪V)*
(read: “v yields w” or “v produces w”)

– S ∈V: the start symbol.

• Q: What are (V, Σ, R, S) for our palindrome example?

• A: V = {x},

Σ = {0,1},

R = {x�ε, x�0, x�1, x�0x0, x�1x1},

S = x.

Discrete Event Systems – R. Wattenhofer 2/6

Derivations and Language

• Definition: The derivation symbol “⇒” (read “1-step derives” or “1-
step produces”) is a relation between strings in (Σ∪V)*. We write
x⇒y if x and y can be broken up as x = svt and y = swt with v�w

being a production in R.

• Definition: The derivation symbol “⇒*”, (read “derives” or
“produces” or “yields”) is a relation between strings in (Σ∪V)*. We
write x ⇒* y if there is a sequence of 1-step productions from x to y.
I.e., there are strings xi with i ranging from 0 to n such that x = x0, y =
xn and x0 ⇒ x1, x1 ⇒ x2, x2 ⇒ x3, … , xn-1 ⇒ xn.

• Definition: Let G be a context-free grammar. The context-free
language (CFL) generated by G is the set of all terminal strings
which are derivable from the start symbol. Symbolically: L(G) = {w

∈ Σ* | S ⇒* w}

Discrete Event Systems – R. Wattenhofer 2/7

Example: Infix Expressions

• Infix expressions involving {+, ×, a, b, c, (,)}

• E stands for an expression (most general)

• F stands for factor (a multiplicative part)

• T stands for term (a product of factors)

• V stands for a variable: a, b, or c

• Grammar is given by:
– E � T | E +T

– T � F | T × F

– F � V | (E)

– V � a | b | c

• Convention: Start variable is the first one in grammar (E)

Discrete Event Systems – R. Wattenhofer 2/8

Example: Infix Expressions

• Consider the string u given by a × b + (c + (a + c))

• This is a valid infix expression. Can be generated from E.

1. A sum of two expressions, so first production must be E ⇒ E +T

2. Sub-expression a×b is a product, so a term so generated by
sequence E +T ⇒ T +T ⇒ T ×F +T ⇒* a×b +T

3. Second sub-expression is a factor only because a parenthesized
sum. a×b +T ⇒ a×b +F ⇒ a×b +(E) ⇒ a×b +(E +T) …

4. E ⇒ E +T ⇒ T +T ⇒ T×F +T ⇒ F×F +T ⇒ V×F+T ⇒ a×F+T ⇒

a×V+T ⇒ a×b +T ⇒ a×b +F ⇒ a×b + (E) ⇒ a×b + (E +T) ⇒ a×b +
(T+T) ⇒ a×b+(F +T) ⇒a×b+(V+T) ⇒ a×b + (c +T) ⇒ a×b + (c+F)
⇒ a×b + (c + (E)) ⇒ a×b + (c +(E +T)) ⇒ a×b+(c+(T+T)) ⇒ a×b

+(c + (F+T)) ⇒ a×b+(c+(a+T)) ⇒ a×b +(c +(a + F)) ⇒ a×b +
(c+(a+V)) ⇒ a×b + (c + (a+c))

Discrete Event Systems – R. Wattenhofer 2/9

Left- and Right-most derivation

• The derivation on the previous slide was a so-called left-most
derivation.

• In a right-most derivation, the variable most to the right is
replaced.

–E ⇒ E +T ⇒ E + F ⇒ E + (E) ⇒ E + (E +T) ⇒ etc.

• There can be a lot of ambiguity involved in how a string is
derived.

• Another way to describe a derivation in a unique way is using
derivation trees.

Discrete Event Systems – R. Wattenhofer 2/10

Derivation Trees

• In a derivation tree (or parse tree) each node is a symbol. Each
parent is a variable whose children spell out the production from left
to right. For, example v � abcdefg:

• The root is the start variable.

• The leaves spell out the derived string from left to right.

v

a b c d e f g

Discrete Event Systems – R. Wattenhofer 2/11

Derivation Trees

• On the right, we see a derivation
tree for our string a×b + (c + (a + c))

• Derivation trees help understanding
semantics! You can tell how
expression should be evaluated from
the tree.

Discrete Event Systems – R. Wattenhofer 2/12

Ambiguity

<sentence> � <action> | <action> with <subject>

<action> � <subject><activity>

<subject> � <noun> | <noun> and <subject>

<activity> � <verb> | <verb><object>

<noun> � Hannibal | Clarice | rice | onions

<verb> � ate | played

<prep> � with | and | or

<object> � <noun> | <noun><prep><object>

• Clarice played with Hannibal

• Clarice ate rice with onions

• Hannibal ate rice with Clarice

• Q: Are there any suspect sentences?

Discrete Event Systems – R. Wattenhofer 2/13

Ambiguity

• A: Consider “Hannibal ate rice with Clarice”

• This could either mean

– Hannibal and Clarice ate rice together.

– Hannibal ate rice and ate Clarice.

• This ambiguity arises from the fact that the sentence has two
different parse-trees, and therefore two different interpretations:

Discrete Event Systems – R. Wattenhofer 2/14

Hannibal and Clarice Ate

noun

H a n n i b a l

noun

C l a r i c e

subject

sentence

activity

w i t haction subject

objectverb

a t e r i c e

Discrete Event Systems – R. Wattenhofer 2/15

noun

H a n n i b a l

noun

C l a r i c e

subject

sentence

activity

action

objectverb

a t e

w i t h

Hannibal the Cannibal

object

r i c e

prepnoun

Discrete Event Systems – R. Wattenhofer 2/16

Ambiguity: Definition

• Definition: A string x is said to be ambiguous relative the grammar G
if there are two essentially different ways to derive x in G. I.e. x
admits two (or more) different parse-trees (equivalently, x admits
different left-most [resp. right-most] derivations). A grammar G is
said to be ambiguous if there is some string x in L(G) which is
ambiguous.

• Question: Is the grammar S � ab | ba | aSb | bSa | SS ambiguous?

• What language is generated?

Discrete Event Systems – R. Wattenhofer 2/17

Ambiguity

• Answer: L(G) = the language with equal no. of a’ s and b’ s

• Yes, the language is ambiguous:

S S S S

a

a

b

b

a

a

b

b

S

S

S

S

S

Discrete Event Systems – R. Wattenhofer 2/18

CFG’s: Proving Correctness

• The recursive nature of CFG’s means that they are especially
amenable to correctness proofs.

• For example let’s consider the grammar

G = (S � ε | ab | ba | aSb | bSa | SS)

• We claim that L(G) = L = { x ∈ {a,b}* | na(x) = nb(x) },

where na(x) is the number of a’s in x, and nb(x) is the number of b’s.

• Proof: To prove that L = L(G) is to show both inclusions:

i. L ⊆ L(G): Every string in L can be generated by G.

ii. L ⊇ L(G): G only generate strings of L.

- This part is easy, so we concentrate on part i.

Discrete Event Systems – R. Wattenhofer 2/19

Proving L ⊆ L(G)

• L ⊆ L(G): Show that every string x with the same number of a’s as
b’s is generated by G. Prove by induction on the length n = |x|.

• Base case: The empty string is derived by S � ε.

• Inductive hypothesis: Assume n > 0. Let u be the smallest non-
empty prefix of x which is also in L.

– Either there is such a prefix with |u| < |x|, then x = uv whereas v ∈ L

as well, and we can use S � SS and repeat the argument.

– Or x = u. In this case notice that u can’t start and end in the same
letter. If it started and ended with a then write u = ava. This means
that v must have 2 more b’s than a’s. So somewhere in v the b’s of u

catch up to the a’s which means that there’s a smaller prefix in L,
contradicting the definition of u as the smallest prefix in L. Thus for
some string v in L we have u = avb OR u = bva. We can use either S

� aSb OR S � bSa.

Discrete Event Systems – R. Wattenhofer 2/20

Designing Context-Free Grammars

• As for regular languages this is a creative process.

• However, if the grammar is the union of simpler grammars, you can
design the simpler grammars (with starting symbols S1, S2,
respectively) first, and then add a new starting symbol/production
S � S1 | S2.

• If the CFG happens to be regular as well, you can first design the
FA, introduce a variable/production for each state of the FA, and
then add a rule x � ay to the CFG if δ(x,a) = y is in the FA. If a state
x is accepting in FA then add x � ε to CFG. The start symbol of the
CFG is of course equivalent to the start state in the FA.

• There are quite a few other tricks. Try yourself…

Discrete Event Systems – R. Wattenhofer 2/21

Push-Down Automata (PDA)

• As finite automata where the machine interpretation of regular
languages, there is also a machine interpretation for grammars,
called push-down automaton.

• The problem of finite automata was that they couldn’t handle
languages that needed some sort of unbounded memory,
something that could be implemented easily by a single
(unbounded) integer register!

• Example: To recognize the language L = {0n1n | n ≥ 0}, all you need

is to count how many 0’s you have seen so far…

• Push-Down Automata allow even more than a register: a full stack!

Discrete Event Systems – R. Wattenhofer 2/22

Recursive Algorithms and Stacks

• A stack allows the following basic operations

– Push, pushing a new element on the top of the stack.

– Pop, removing the top element from the stack (if there is one).

– Peek, checking the top element without removing it.

• General Principle in Programming: Any recursive algorithm can
be turned into a non-recursive one using a stack and a while-
loop which exits only when stack is empty.

• It seems that with a stack at our fingertips we can even
recognize palindromes! Yoo-hoo!

– Palindromes are generated by the grammar S � ε | aSa | bSb.

– Let’s simplify for the moment and look at S � # | aSa | bSb.

Discrete Event Systems – R. Wattenhofer 2/23

From CFG’s to Stack Machines

• The CFG S � # | aSa | bSb describes palindromes containing
exactly one #-symbol. Using a stack, how can we recognize such
strings?

• Answer: Use a three phase process:

- Push mode: Before reading “#”, push everything on the stack.

- Reading “#” switches modes.

- Pop mode: Read remaining symbols making sure that each new read
symbol is identical to symbol popped from stack.

• Accept if able to empty stack completely. Otherwise reject. Also
reject if could not pop somewhere.

Discrete Event Systems – R. Wattenhofer 2/24

From CFG’s to Stack Machines

(1)
PUSH

(3)
POP

read a or b?
Push it

ACCEPT

(2)
read #?

(ignore stack)

read == peek?
then Pop

Else: CRASH!

empty
stack?

Discrete Event Systems – R. Wattenhofer 2/25

PDA’s à la Sipser

• To aid analysis, theoretical stack machines restrict the allowable
operations. Each text-book author has his/her own version.

• Sipser’s machines are especially simple:
– Push/Pop rolled into a single operation: replace top stack symbol.

– In particular, replacing top by ε is a pop.

• No intrinsic way to test for empty stack.
– Instead often push a special symbol (“$”) as the very first operation!

• Epsilon’s used to increase functionality
– result in default nondeterministic machines.

Discrete Event Systems – R. Wattenhofer 2/26

Sipser’s Version

(1)

PUSH

(3)

POP

read a or b ?

Push it

ACCEPT

(2)

read # ?

(ignore stack)

read == peek ?

Pop

Else: CRASH!

empty

stack?

ε , ε�$

a , ε�a

b , ε�b

#, ε�ε ε , $�ε

a , a�ε
b , b�ε

Discrete Event Systems – R. Wattenhofer 2/27

Sipser’s Version

Meaning of labeling convention:

If at state p and next input is x and top stack is y,

then go to state q and replace y by z on stack.

• x = ε: ignore input, don’t read

• y = ε: ignore top of stack and push z

• z = ε: pop y

• In addition, push “$” initially to detect the empty stack.

p q
x, y �z

Discrete Event Systems – R. Wattenhofer 2/28

PDA: Formal Definition

• Definition: A pushdown automaton (PDA) is a 6-tuple
M = (Q, Σ, Γ, δ, q0, F):

– Q, Σ, and q
0
, and F are defined as for an FA.

– Γ is the stack alphabet.

– δ is as follows: Given a state p, an input letter x and a tape letter y,
δ(p,x,y) gives all (q,z) where q is a target state and z a stack
replacement for y.

)(Σ:δ
εεε

Γ×→Γ×× QPQ

Discrete Event Systems – R. Wattenhofer 2/29

PDA Exercises

• Draw the PDA {aibjck | i,j,k ≥ 0 and i=j or i=k}

• Draw the PDA for L = {x ∈ {a,b}* | na(x) = 2nb(x)}

Discrete Event Systems – R. Wattenhofer 2/30

Solution 2

• The idea is to use the stack to keep count of the number of a’s and/or b’s
needed to get a valid string. If we have a surplus of b’s thus far, we
should have corresponding number of a’s (two for every b) on the stack.
On the other hand, if we have a surplus of a’s we cannot put b’s on the
stack since we can’t split symbols. So instead, put two “negative” a-

symbols, where a negative a will be denoted by capital A.

• Let’s see how this looks on the next slide.

Discrete Event Systems – R. Wattenhofer 2/31

Solution 2

ε , ε�$

a, $� $

a, A�A

ε , $�ε

ε, ε�A

a , a�ε

b, $� $

b, a� a ε, ε�a

ε, ε�a

b, A�ε
ε, A�ε ε, $�$

Discrete Event Systems – R. Wattenhofer 2/32

Model Robustness

• The class of regular languages was quite robust

– Allows multiple ways for defining languages (automaton vs. regexp)

– Slight perturbations of model do not change result (non-determinism)

• The class of context free languages is also robust, as you can use
either PDA’s or CFG’s to describe the languages in the class.
However, it is less robust when it comes to slight perturbations of
the model:

– Smaller classes

• Right-linear grammars

• Deterministic PDA’s

– Larger classes

• Context Sensitive Grammars

Discrete Event Systems – R. Wattenhofer 2/33

Right Linear Grammars and Regular Languages

• The DFA above can be simulated by the grammar

• x � 0x | 1y

• y � 0x | 1z

• z � 0x | 1z | ε

• Definition: A right-linear grammar is a CFG such that every
production is of the form A � uB, or A � u where u is a terminal
string, and A,B are variables.

0

1

0

0

1

1

x y z

Discrete Event Systems – R. Wattenhofer 2/34

Right Linear Grammars vs. Regular Languages

• Theorem: If M = (Q, Σ, δ, q0, F) is an NFA then there is a right-
linear grammar G(M) which generates the same language as M.

• Proof:

– Variables are the states: V = Q

– Start symbol is start state: S = q
0

– Same alphabet of terminals Σ
– A transition q

1
�a �q

2
becomes the production q

1
�aq

2

– Accept states q ∈ F define the ε-productions q � ε

• Question: Can every CFG be converted into a right-linear
grammar?

• Answer: No! This would mean that all context free languages are
regular. But, for example, {anbn} is not regular.

Discrete Event Systems – R. Wattenhofer 2/35

Chomsky Normal Form

• Chomsky came up with an especially simple type of context free
grammars which is able to capture all context free languages, the
Chomsky normal form (CNF).

• Chomsky's grammatical form is particularly useful when one wants
to prove certain facts about context free languages. This is because
assuming a much more restrictive kind of grammar can often make
it easier to prove that the generated language has whatever
property you are interested in.

• Noam Chomsky, linguist at MIT, creator of the
Chomsky hierarchy, a classification of formal
languages. Chomsky is also widely known for his
left-wing political views and his criticism of the
foreign policy of U.S. government.

Discrete Event Systems – R. Wattenhofer 2/36

Chomsky Normal Form

• Definition: A CFG is said to be in Chomsky Normal Form if every
rule in the grammar has one of the following forms:

– S � ε (ε for epsilon’s sake only)

– A � BC (dyadic variable productions)

– A � a (unit terminal productions)

where S is the start variable, A,B,C are variables and a is a terminal.
Thus epsilons may only appear on the right hand side of the start
symbol and other rights are either 2 variables or a single terminal.

Discrete Event Systems – R. Wattenhofer 2/37

CFG � CNF

• Converting a general grammar into Chomsky Normal Form
works in four steps:

1. Ensure that the start variable doesn't appear on the right hand
side of any rule.

2. Remove all epsilon productions, except from start variable.

3. Remove unit variable productions of the form A � B where A
and B are variables.

4. Add variables and dyadic variable rules to replace any longer
non-dyadic or non-variable productions

Discrete Event Systems – R. Wattenhofer 2/38

CFG � CNF: Example

1. No start variable on right hand side

2. Only start state is allowed to have ε

3. Remove unit variable productions of the form A � B.

Discrete Event Systems – R. Wattenhofer 2/39

CFG � CNF: Example continued

4. Add variables and dyadic variable rules to replace any longer
productions.

Discrete Event Systems – R. Wattenhofer 2/40

CFG � PDA

• CFG’s can be converted into PDA’s.

• In “NFA � REX” it was useful to consider GNFA’s as a middle
stage. Similarly, it’s useful to consider Generalized PDA’s here.

• A Generalized PDA (GPDA) is like a PDA, except it allows the top
stack symbol to be replaced by a whole string, not just a single
character or the empty string. It is easy to convert a GPDA’s back
to PDA’s by changing each compound push into a sequence of
simple pushes.

Discrete Event Systems – R. Wattenhofer 2/41

CFG � GPDA Recipe

1. Push the marker symbol $ and the start symbol S on the stack.

2. Repeat the following steps forever

a. If the top of the stack is the variable symbol A, nondeterministically
select a rule of A, and substitute A by the string on the right-hand-side
of the rule.

b. If the top of the stack is a terminal symbol a, then read the next symbol
from the input and compare it to a. If they match, continue. If they do
not match reject this branch of the execution.

c. If the top of the stack is the symbol $, enter the accept state. (Note that
if the input was not yet empty, the PDA will still reject this branch of the
execution.)

Discrete Event Systems – R. Wattenhofer 2/42

CFG � PDA: Example

• S � aTb | b

• T � Ta | ε

Discrete Event Systems – R. Wattenhofer 2/43

CFG � PDA: Now you try!

•• Convert the grammar Convert the grammar S � ε |a | b | aSa | bSb

Discrete Event Systems – R. Wattenhofer 2/44

Context Sensitive Grammars

• An even more general form of grammars exists. In general, a
non-context free grammar is one in which whole mixed
variable/terminal substrings are replaced at a time. For example
with Σ = {a,b,c} consider:

• For technical reasons, when length of LHS always ≤ length of
RHS, these general grammars are called context sensitive.

S � ε | ASBC

A � a

CB � BC

aB � ab

bB � bb

bC � bc

cC � cc

What language is
generated by this non-
context-free grammar?

Discrete Event Systems – R. Wattenhofer 2/45

PDA � CFG

• To convert PDA’s to CFG’s we’ll need to simulate the stack inside
the productions.

• Unfortunately, in contrast to our previous transitions, this is not quite
as constructive. We will therefore only state the theorem.

• Theorem: For each push-down automation there is a context-free
grammar which accepts the same language.

• Corollary: PDA ≈ CFG.

Discrete Event Systems – R. Wattenhofer 2/46

Are all languages context-free?

• Design a CFG (or PDA) for the following languages:

• L = { w ∈ {0,1,2}* | there are k 0’s, k 1’s, and k 2’s for k ≥ 0 }

• L = { w ∈ {0,1,2}* | with |0| = |1| or |0| = |2| or |1| = |2| }

• L = { 0k1k2k | k ≥ 0 }

Discrete Event Systems – R. Wattenhofer 2/47

Tandem Pumping

• Analogous to regular languages there is a pumping lemma for
context free languages. The idea is that you can pump a context
free language at two places (but not more).

• Theorem: Given a context free language L, there is a number p
(tandem-pumping number) such that any string in L of length ≥ p

is tandem-pumpable within a substring of length p. In particular,
for all w ∈ L with |w| ≥ p we we can write:

– w = uvxyz

– |vy| ≥ 1 (pumpable areas are non-empty)

– |vxy| ≤ p (pumping inside length-p portion)

– uvixyiz ∈ L for all i ≥ 0 (tandem-pump v and y)

• If there is no such p the language is not context-free.

Discrete Event Systems – R. Wattenhofer 2/48

Proving Non-Context Freeness: Example

• L ={1n0n 1n0n | n is non-negative }

• Let’s try w = 1p0p1p0p. Clearly w ∈ L and |w| ≥ p.

• With |vxy| � p, there are only three places where the “sliding

window” vxy could be:

• In all three cases, pumping up such a case would only change the
number of 0s and 1s in that part and not in the other two parts; this
violates the language definition.

 I III

 1…10…01…10…0

 II

Discrete Event Systems – R. Wattenhofer 2/49

Proving Non-Context Freeness: You try!

• L = { x=y+z | x, y, and z are binary bit-strings satisfying the equation }

• The hard part is to come up with a word which cannot be pumped,
such as

1p+1=1p+10p

• Applying the tandem pumping lemma is “easy”
 I

1 p+ 1=1 p+10 p

 II

Discrete Event Systems – R. Wattenhofer 2/50

Transducers

• Definition: A finite state transducer (FST) is a type of finite
automaton whose output is a string and not just accept or reject.

• Each transition of an FST is labeled with two symbols, one
designating the input symbol for that transition (as for automata),
and the other designating the output symbol.

– We allow ε as output symbol if no symbol should be added to the string.

• The figure on the right shows an example of
a FST operating on the input alphabet {0,1,2}
and the output alphabet {0,1}

• Exercise: Can you design a transducer that produces the inverted
bit-string of the input string (e.g. 01001 � 10110)?

Discrete Event Systems – R. Wattenhofer 2/51

Even smarter automata…

• Even though the PDA is more powerful than the FA, Arnold
Schwarzenegger would probably still call it a “girlie-machine,”
since it doesn’t understand a lot of important languages.

• Let’s try to make it more powerful by adding a second stack

– You can push or pop from either stack, also there’s still an input string

– Clearly there are quite a few “implementation details”

– It seems at first that it doesn’t help a lot to add a second stack, but…

• Lemma: A PDA with two stacks is as powerful as a machine which
operates on an infinite tape (restricted to read/write only “current”
tape cell at the time – known as “Turing Machine”).

– Still that doesn’t sound very exciting, does it…?!?

Discrete Event Systems – R. Wattenhofer 2/52

Turing Machine

• A Turing Machine (TM) is a device with a finite amount of read-only

“hard” memory (states), and an unbounded amount of read/write
tape-memory. There is no separate input. Rather, the input is
assumed to reside on the tape at the time when the TM starts
running.

• Just as with Automata, TM’s can either be input/output machines
(compare with Finite State Transducers), or yes/no decision
machines.

Discrete Event Systems – R. Wattenhofer 2/53

Turing Machine: Example Program

• Sample Rules:

– If read 1, write 0, go right, repeat.

– If read 0, write 1, HALT!

– If read �, write 1, HALT! (the symbol � stands for the blank cell)

• Let’s see how these rules are carried out on an input with the
reverse binary representation of 47:

1 1 1 1 0 1

Discrete Event Systems – R. Wattenhofer 2/54

Turing Machine: Formal Definition

• Definition: A Turing machine (TM) consists of a 7-tuple
M = (Q, Σ, Γ, δ, q0, qacc, qrej).

– Q, Σ, and q0, are the same as for an FA.

– qacc and qrej are accept and reject states, respectively.

– Γ is the tape alphabet which necessarily contains the blank symbol
�, as well as the input alphabet Σ.

– δ is as follows:

– Therefore given a non-halt state p, and a tape symbol x, δ(p,x) =
(q,y,D) means that TM goes into state q, replaces x by y, and the
tape head moves in direction D (left or right).

• A string x is accepted by M if after being put on the tape with the
Turing machine head set to the left-most position, and letting M
run, M eventually enters the accept state. In this case w is an
element of L(M) – the language accepted by M.

}RL,{}),{-(:δ rejacc ×Γ×→Γ× QQ qq

Discrete Event Systems – R. Wattenhofer 2/55

Comparison

Device
Separate

Input?
Read/Write Data

Structure
Deterministic by

default?

FA Yes None Yes

PDA Yes LIFO Stack No

TM No
1-way infinite tape. 1
cell access per step.

Yes

(but will also allow
crashes)

Discrete Event Systems – R. Wattenhofer 2/56

Alan Turing

• 1912 – 1954, British mathematician

• one of the fathers of computer science

• his computer model – the Turing Machine – was
inspiration/premonition of the electronic computer that came two
decades later

• during World War II he worked on breaking German cyphers,
particularly the Enigma machine.

• Invented the “Turing Test” used in Artificial Intelligence

• Legacy: The Turing Award.
“Nobel prize” in computer science

Discrete Event Systems – R. Wattenhofer 2/57

Back to the Turing Machine

• First Goal of Turing’s Machine: A “computer” which is as powerful as
any real computer / programming language
– As powerful as C, or “Java++”

– Can execute all the same algorithms / code

– Not as fast though (move the head left and right instead of RAM)

– Historically: A model that can compute anything that a human can
compute. Before invention of electronic computers the term “computer”
actually referred to a person who’s line of work is to calculate numerical
quantities!

– This is known as the [Church-[Post-]] Turing thesis, 1936.

• Second Goal of Turing’s Machine: And at the same time a model
that is simple enough to actually prove interesting epistemological
results.

Discrete Event Systems – R. Wattenhofer 2/58

Can a computer compute anything…?!?

• Given collection of dominos, e.g.

• Can you make a list of these dominos (repetitions are allowed) so
that the top string equals the bottom string, e.g.

• This problem is known as Post-Correspondance-Problem.

• It is provably unsolvable by computers!

b

ca

a

ab

ca

a

abc

c

abc

c

a

ab

b

ca

ca

a

a

ab

Discrete Event Systems – R. Wattenhofer 2/59

Also the Turing Machine (the Computer) is limited

• Similary it is undecidable whether
you can cover a floor with a given
set of floor tiles (famous examples
are Penrose tiles or Wang tiles)

• More important: It is undecidable whether a computer program halts

– You cannot write a Java program which decides
whether another Java program has an infinite loop.

• Examples are leading back to Kurt Gödel's
incompleteness theorem

– “Any powerful enough axiomatic system will
allow for propositions that are undecidable.”

Discrete Event Systems – R. Wattenhofer 2/60

Excursion: P and NP

• P is the complexity class containing decision problems which can be
solved by a Turing machine in time polynomial of the input size.

• NP is the class of decision problems solvable by a non-deterministic
polynomial time Turing machine such that the machine answers
"yes," if at least one computation path accepts, and answers “no,” if
all computation paths reject.

– Quite similarly to the nondeterministic finite automaton from Chapter 1.

– Informally, there is a Turing machine which can check the correctness
of an answer in polynomial time.

– E.g. one can check in polynomial time whether a traveling salesperson
path connects n cities with less than a total distance d.

– Or one can check in polynomial time whether two big numbers are the
factors of an even bigger number (with n digits).

Discrete Event Systems – R. Wattenhofer 2/61

P vs. NP

• An important notion in this context is the large set of NP-complete
decision problems, which is a subset of NP and might be informally
described as the "hardest" problems in NP. If there is a polynomial-
time algorithm for even one of them, then there is a polynomial-time
algorithm for all the problems in NP.

– E.g. Given a set of n integers, is there a non-empty subset which sums
up to 0? This problem was shown to be NP-complete.

– Also the traveling salesperson problem is NP-complete, or Tetris, or
Minesweeper.

• One of the big questions in Math and CS: Is P = NP?

– Or are there problems which cannot be solved in polynomial time.

– Big practical impact (e.g. in Cryptography).

– One of the seven $1M problems by the Clay Mathematics Institute of
Cambridge, Massachusetts.

Discrete Event Systems – R. Wattenhofer 2/62

Turing-Machine
Computer

Summary

Context-Free
Programming Language

Regular
Cola Machine

Undecidable
“God”

Discrete Event Systems – R. Wattenhofer 2/63

Bedtime Reading

If you’re leaning towards “human = machine”

If you’re leaning towards “human ⊃ machine”

