
Disclaimer: these questions are not in the style of exam questions.
They are meant to make you think about possible trade-offs and dif-
ferent possible solutions to problems that we face when building a
storage system, and to make you think about whether you got the
“big picture”.

Quiz 1 - I/O

USB mouse Different designs are conceivable; for modern USB mice, the USB con-
troller keeps polling the mouse, and if a button click or movement is
detected by the USB controller, then the controller issues an interrupt to
the CPU. This way, the CPU isn’t busy dealing with the mouse unless
anything actually happens.

DMA The DMA processes commands that are issued by the CPU, and those
commands specify which memory addresses have to be written to/read
from which addresses in storage.

System crashes Most system crashes are the result of poorly written device drivers. The
producers of operating systems that don’t control which hardware users
will attach offer an API for device drivers to use, and developers who
write those drivers can introduce bugs by using the API incorrectly, or
by making the drivers do things within a device that cause errors. Since
driver code is executed in kernel mode, drivers can easily cause problems
for the system that way.

Quiz 2 - Hard Disks

Crash while writing Modern hard drives are built in a way that even if power fails while a
sector is being written, the write completes.

OS and physical location An HDD does not expose its geometry to the OS, so the OS does not know
where blocks physically are.

Storage capacity of tracks For geometric reasons, the outer tracks are longer than the inner tracks,
and since we can utilize that extra length with additional blocks, different
tracks do not have the same storage capacity.

Disk scheduling Both the OS and the disk itself can schedule requests. The OS can decide
which of the requests that it wants to issue it will issue first, and the disk
can rearrange the requests it receives as well.

Quiz 3 - Files and Directories

Windows shortcut A shortcut on Windows is a small file with the file extension .lnk; that
file extension is never shown in Explorer, but can be seen in a command
line using the dir command.

What happens when mounting The original /dir becomes invisible, until sda2 is unmounted again.

Mounting to C:/dir To our surprise, this is possible.

1



File descriptors Every process has the three file descriptors 0, 1, 2 (standard input, stan-
dard output, standard error) by default. File descriptors that get opened
are assigned consecutively, so if two different processes each open just one
file, each process will have the number 3 as the file descriptor for that file.
Those two file descriptors are not the same object, but contain the same
information.

lseek/fseek Those are system calls to move the logical position in a file. fseek is the
name in C/C++, lseek is the POSIX name.

Same file in two directories If a file is represented by an inode, and by “having the same file twice”
we mean that we have two hard links, then the data of the file is stored
only once. On the other hand, if we copy a file, then we will need two
physical copies of the same data in case one of the two files gets edited so
the other one remains unaffected. We might consider doing this lazily: we
could only actually copy the data once an edit is supposed to be written
to disk, but this would delay the cost of copying to the moment of editing.

Hard link to directory Most operating systems do not allow hard links to directories as this might
introduce cycles in the directory tree. Many tools rely on the directory
tree not containing any cycles, thus the easiest way to conform to that is
not allowing hard links to directories. Soft links to directories are allowed
on the other hand, and the reason is that they can easily be ignored in
case cycles are detected/might be an issue as they can be distinguished
from hard links easily. Distinguishing between two hard links with regard
to which one is “the real one” is not possible, since both are equally “real”.

Programs could be adapted to detect hard link cycles in the directory
tree as well. Some operating systems incorporate file systems that can
deal with that, or allow hard links to directories, but only ones that are in
different subtrees than the one the hard link is in. The easier design choice
made in most operating systems however was to not allow hard links to
directories.

Quiz 4 - File System Implementation

Finding free blocks Some file systems use a free list, some use bitmaps, others might use
different ways.

Physical location of file The OS can choose which logical blocks it wants to write to, and the disk
can choose which physical block to write a logical block to. For HDDs, the
logical-to-physical translation is not strictly necessary; however, modern
HDDs can mark faulty blocks as dead, and a write to a dead block has
to be relocated to a live block, which a logical-to-physical translation can
do.

Number of inodes per file Each file is represented by exactly one inode. A hard link to a file is an
entry in a data block of a directory that associates a name with an inode
number, so multiple hard links will all point to the same inode.

2



inode size Inodes have a fixed size. Inodes for larger files will make use of indirect
pointers, which point to data blocks that contain pointers of one level
lower. For example, a doubly-indirect pointer points to a data block that
only contains singly-indirect pointers. Larger files will take up more space
in the data region due to their larger size and the overhead of data blocks
used for indirect or direct pointers, but no more than one inode is involved.

inode and file name An inode does not contain a file name. The only places where names
to a file exist are the data blocks of directories; those contain pairs of
“file name:inode number” that are used to resolve paths. Different names
might point to the same inode.

Path length and disk accesses Resolving /dir/dir/dir/dir/foo.txt costs more disk accesses than re-
solving /foo.txt since every subdirectory has to have its data block(s)
read, then the inode of the next subdirectory has to be read to find its
data block(s),. . . all the way down to the lowest subdirectory. However,
modern operating systems cache recently resolved paths in main memory
(i.e. RAM), and so only the first resolution of either path would cost any
disk accesses at all, assuming neither path leaves the cache.

Block size in FAT The blocks in a single partition are the same size.

Quiz 5 - SSDs

Flash faster than disks On average, flash disks are significantly faster than disks, in particular for
random access. It is possible that a very high end HDD might be on par
with or slightly faster than a very old and slow SSD in some situations,
but comparing similar market segments, SSDs win.

SSD wearout from reads Reading a page of an SSD does not cause any wear. However: many
operating systems attach metadata to files that stores information about
when a file was last accessed, and if this is the case, then a read access
- while not causing any wear itself - will trigger a write access to update
the most-recently-accessed value, and that write will cause wear. For this
reason, most-recently-accessed information will sometimes be disabled by
administrators when using SSDs.

Changing a file When changing a file, even if only a small counter, a write access issued
to the SSD will typically not overwrite the page in which that portion of
the file previously resided (see FTL).

More than 1 TB? SSDs contain more actually usable space than is exposed to the user. This
extra space is used for wear leveling.

Log-structured The name comes from the practice of logging write requests by appending
them to the end of a log.

3


