Wireless Protocols

Yvonne-Anne Pignolet, May 2013
Wireless Networks

Very popular!

Biggest Advantage:
 No wires 😊
 => fast installation
 => cheaper

Biggest Disadvantage:
 No wires ☹
 => attenuation
 => interference
 => energy supply

Big Question
To send or not to send?
Radio Network Model

I can:

send XOR receive

reach all other nodes
Radio Network Model

I can:
- send XOR
- receive
- reach all other nodes

But two or more simultaneous transmissions collide
Today

Leader Election
How long does it take until one node can transmit alone?

Initialization
How to assign IDs \{1, 2, \ldots, n\}?

Asynchronous Wakeup
How long for leader election if nodes wakeup up at arbitrary times?

Def: X

\[X \] is the RV denoting the number of nodes transmitting in a given time slot.
Leader Election without CD: Slotted Aloha

Slotted Aloha

```
repeat
    transmit with probability 1/n
until one node has transmitted alone
```

Expected time complexity: e

$$Pr[X = 1] = n \cdot \frac{1}{n} \cdot \left(1 - \frac{1}{n}\right)^{n-1} \approx \frac{1}{e}.$$

But then, how can the leader know its role?

The nodes start sending the ID of the leader with $1/n$

But how can the node that sent the leader ID know the leader knows?

The leader sends an acknowledgement to this node.
Leader Election without CD: Unslotted Aloha

Slotted Aloha

repeat
 transmit with probability $1/n$
until one node has transmitted alone

And without time slots?

\[\Rightarrow \text{Two partially overlapping messages collide} \]
\[\Rightarrow \text{Probability for success drops to } 1/(2e) \]

Why? Each slot is divided into t small time slots, $t \rightarrow \infty$, nodes start a new t-slot long transmission with probability $1/(2nt)$
Repeated Aloha

\begin{align*}
i &= 1 \\
\text{repeat} & \\
\quad & \text{transmit with probability } 1/n \\
\quad & \text{if node } v \text{ transmitted alone, } v \text{ gets ID } i, i++, n-- \\
\text{until} & \text{ all nodes have an ID}
\end{align*}

Each ID assignment takes expected time \(e \) \\
\Rightarrow \text{Total expected time } n \cdot e = O(n)

But:
Nodes need to known \(n \)!!!
Subroutine Split(l)

repeat
 choose \(r \) uniformly at random from \(\{0, 1\} \), join \(P_{l+r} \)
 in the next two time slots transmit in slot \(r \) and listen in other slot
until there was at least one transmission in both slots

Initialize()
N:= 1; L := 1;
while \(L \geq 1 \) do
 all nodes in \(P_L \) transmit
 if exactly one node \(v \) has transmitted then
 \(v \) gets ID \(N \) and stops the protocol
 \(N++; L--; \)
 else
 use Split(L) to partition \(P_L \) into non-empty sets \(P_L \) and \(P_{L+1} \)
 \(L++ \)
end while
Uniform Initialization with CD

Successful:
split into 2 non-empty subsets

We need $2n-1$ successful splits ≈ creating a binary tree with n leaves and $n-1$ inner nodes.

Probability to create two non-empty subsets from a set of size k:

$$Pr[1 \leq X \leq k - 1] = 1 - Pr[X = 0] - Pr[X = k] = 1 - \frac{1}{2^k} - \frac{1}{2^k} \geq \frac{1}{2}.$$

Thus we need time $O(n)$ for $2n-1$ splits in expectation.

(with Chernoff whp)
Uniform Initialization without CD

Uniform Initialization (no CD)

1. Elect a leader
2. Divide every slot of the protocol with CD into two slots
 a) In the first slot, the nodes S transmit according to the protocol
 b) In the second slot, the nodes S from a) and the leader transmit
3. Distinguish the cases according to the table

 \[
 \begin{array}{|c|c|c|}
 \hline
 |S| & \text{nodes in } S \text{ transmit} & \text{nodes in } S \cup \{\ell\} \text{ transmit} \\
 \hline
 0 & \times & \checkmark \\
 1, S = \{\ell\} & \checkmark & \checkmark \\
 1, S \neq \{\ell\} & \checkmark & \times \\
 \geq 2 & \times & \times \\
 \hline
 \end{array}
 \]

 noise / silence: \(\times\)
successful transmission: \(\checkmark\)

Overhead: factor 2
More generally, a leader brings CD to any protocol
Leader Election With High Probability

Def: whp

An event happens with high probability if it occurs with $p \geq 1 - 1/n^c$ for some constant c.

Slotted Aloha

repeat
 transmit with probability $1/n$
until one node has transmitted alone

The probability of not electing a leader after $c \log n$ time slots of Slotted Aloha is

$$
\left(1 - \frac{1}{e} \right)^{c \ln n} = \left(1 - \frac{1}{e} \right)^{e \cdot c' \ln n} \leq \frac{1}{e^{\ln n \cdot c'}} = \frac{1}{n^{c'}}.
$$
Uniform Leader Election (no CD)

Decrease Prob

\[
\text{for } k = 1, 2, 3, \ldots \text{ do} \\
\text{for } i = 1 \text{ to } ck \text{ do} \\
\quad \text{transmit with probability } p := 1/2^k \\
\quad \text{if node } v \text{ was the only node which transmitted then} \\
\quad \quad v \text{ becomes the leader} \\
\quad \text{break} \\
\text{end if} \\
\text{end for} \\
\text{end for}
\]

At the beginning: p too high and many collisions

When \(k \approx \log n \), then \(p \approx 1/n \) …

and we have a leader whp when \(i = O(\log n) \) (see previous slide)

\[\Rightarrow \text{Time complexity } O(\log n \ast \log n) = O(\log^2 n) \]
Uniform Leader Election (with CD)

Transmit or keep silent

```plaintext
repeat
    transmit with probability \( \frac{1}{2} \)
    if at least one node transmitted then
        all nodes that did not transmit quit the protocol
    end if
until one node transmits alone
```

~ half of the nodes will never transmit again

active nodes decreases monotonically, but always \(\geq 1 \).

Successful round (SR): at most half of active nodes transmit

Assume \(k \geq 2 \) (otherwise we have elected a leader), then prob of SR:

\[
Pr[1 \leq X \leq \left\lfloor \frac{k}{2} \right\rfloor] \geq \frac{1}{2} - Pr[X = 0] = \frac{1}{2} - \frac{1}{2^k} \geq \frac{1}{4}.
\]

O(\(\log n \)) SR for leader election. With Chernoff we can prove whp.
Faster Uniform Leader Election (with CD)

Guess, guess, walk

1. Get raw estimate of n, $i \approx (1 \pm \frac{1}{2}) \log n$
2. Get better estimate with binary search, $j \approx \log n \pm \log \log n$
3. Do a biased random walk, $k \approx \log n \pm 2$

\begin{align*}
i &:= 1 \\
\text{repeat} &\\
\quad i &:= 2 \cdot i \\
\quad \text{transmit with probability } 1/2^i &\\
\text{until} &\text{ no node transmitted}
\end{align*}

\begin{align*}
u &:= 2^i \\
l &:= 2^{i-2} \\
\text{while} &\ l + 1 < u \ \text{do} \\
\quad j &:= \left\lceil \frac{i+u}{2} \right\rceil \\
\quad \text{transmit with probability } 1/2^i &\\
\quad \text{if no node transmitted then} &\\
\quad \quad u &:= j \\
\quad \text{else} &\\
\quad \quad l &:= j &
\end{align*}

\begin{align*}
k &:= u \\
\text{repeat} &\\
\quad \text{transmit with probability } 1/2^k &\\
\quad \text{if no node transmitted then} &\\
\quad \quad k &:= k - 1 \\
\quad \text{else} &\\
\quad \quad k &:= k + 1 &
\end{align*}

\begin{align*}
\text{If } j &> \log n + \log \log n, \text{ then } P[X > 1] \leq \frac{1}{\log n}. \\
\text{If } j &< \log n - \log \log n, \text{ then } P[X = 0] \leq \frac{1}{n}. \\
\text{If } i &> 2 \log n, \text{ then } P[X > 1] \leq \frac{1}{\log n}. \\
\text{If } i &< \frac{1}{2} \log n, \text{ then } P[X = 0] \leq \frac{1}{n}. \\
\Rightarrow &\text{ Time for Phase 1: } O(\log \log n) \text{ with probability } > 1-1/\log n \\
\Rightarrow &\text{ Time for Phase 2: } O(\log \log n) \text{ with probability } > 1-1/\log n \n\end{align*}
Guess, guess, walk

\[
i := 1 \\
\text{repeat} \\
i := 2 \cdot i \\
\text{transmit with probability } 1/2^i \\
\text{until no node transmitted} \\
\]

\[
u := 2^i \\
l := 2^{i-2} \\
\text{while } l + 1 < u \text{ do} \\
j := \left\lceil \frac{l+u}{2} \right\rceil \\
\text{transmit with probability } 1/2^j \\
\text{if no node transmitted then} \\
u := j \\
\text{else} \\
l := j \\
\]

\[
k := u \\
\text{repeat} \\
\text{transmit with probability } 1/2^k \\
\text{if no node transmitted then} \\
k := k - 1 \\
\text{else} \\
k := k + 1 \\
\text{end if} \\
\text{until exactly one node transmitted} \\
\]

\[
i \approx (1 \pm \frac{1}{2}) \log n \\
j \approx \log n \pm \log \log n \\
k \approx \log n \pm 2 \\
\]

Let \(v \) be such that \(2^{v-1} < n \leq 2^v \), i.e., \(v \approx \log n \). If \(k > v + 2 \),
then \(Pr[X > 1] < \frac{1}{4} \).
If \(k < v - 2 \), then \(P[X = 0] \leq \frac{1}{4} \).
If \(v - 2 \leq k \leq v + 2 \), then \(P[X = 1] \) is constant

\[\Rightarrow \text{Time for Phase 3: } O(\log \log n) \text{ with probability } > 1 - 1/\log n \text{ (Chernoff)} \]
\[\Rightarrow \text{Total time: } O(\log \log n) \text{ with probability } > 1 - \log \log n/\log n \text{ (union bound to keep error probability low)} \]
For 2 nodes, the probability that exactly one transmits is at most
\[P[X = 1] = 2 p (1 - p) \leq 1/2. \]

Thus after time \(t \) the election probability is at most \(1-1/2^t \).

If a network with more than 2 nodes could find a leader quicker or
with higher probability then so could 2 nodes.
Leader Election with Asynchronous Wakeup?

Wakeup Lower Bound

Any uniform protocol has time complexity $\Omega(n/\log n)$ for leader election whp if nodes wake up arbitrarily.

Uniform \Rightarrow all nodes executed the same code
At some point the nodes must transmit.

First transmission at time t, with probability p, independent of n
Adversary wakes up $w = \frac{c}{p} \ln n$ nodes in each time slot

$\Pr[E_1] = \Pr[X=1 \text{ at time } t] < \frac{1}{n^{c-1}} = \frac{1}{n^{c'}}.$

$\Pr[X \neq 1 \text{ at time } t \text{ and the following } n/w \text{ time slots}]$

$$= (1 - Pr(E_1))^{n/w} > \left(1 - \frac{1}{n^{c'}}\right)^{\Theta(n/\log n)} > 1 - \frac{1}{n^{c''}}.$$
Summary

Leader Election
How long does it take until one node can transmit alone?
- \(e\) in expectation, knowing \(n\)
- \(O(\log n)\) whp, without knowing \(n\), no CD
- \(O(\log \log n)\) without knowing \(n\), with CD, with probability \(1 - \log \log n / \log n\)
- \(1 - 1/\log n\) election probability lower bound for \(O(\log \log n)\) time

Initialization
How to assign IDs \(\{1, 2, \ldots, n\}\)?
- \(O(n)\) with SplitInitialize (whp with Chernoff)

Asynchronous Wakeup
How long for leader election if nodes wakeup up at arbitrary times?
- \(\Omega(n/\log n)\) without IDs and without knowing \(n\)