

Self-Adjusting Binary Search Trees

Andrei Pârvu

Motivation

Motivation: Find

Motivation: Insert

Motivation: Delete

Goal: $O(M * \log N)$ time complexity (N elements, M operations)

What is a Binary Search Tree?

- Binary tree :)

What is a Binary Search Tree?

- Binary tree :)
- Each node stores an element (key)

What is a Binary Search Tree?

- Binary tree :)
- Each node stores an element (key)
- Key of a node:
- is bigger than the keys of the left subtree
- is smaller than the keys of the right subtree

Glizürich

Example

Operations: find element

- walk recursively down the tree

Operations: find element

- walk recursively down the tree
- if element equals with node key, stop

Operations: find element

- walk recursively down the tree
- if element equals with node key, stop
- else
- go to left child if element < than node key
- go to right child if element > than node key

Operations: insert element

- same algorithm as find
- add element as leaf

Example: insert element

Time complexity of operations

- if elements are chosen randomly, then $O(M * \log N)$
- most of the time that is not the case :(

Example linear tree

How to make it faster?

Rotations

- rotate a node to the left or to the right

Rotations

- rotate a node to the left or to the right
- maintain the BST invariant

Rotations

- rotate a node to the left or to the right
- maintain the BST invariant
- use them to modify the tree structure and maintain it balanced

Example: rotation to the right

Operations: rotation to the left

How can we use rotations?

Move to root heuristic

- after accessing an item at node x, rotate edge from x to its parent until x becomes root.
- Does this improve anything?

Move to root heuristic

- after accessing an item at node x, rotate edge from x to its parent until x becomes root.
- Does this improve anything?
- No, time of access can still be $O(n)$

Splay tree

- BST with a restructuring heuristic, called splaying
- after inserting or finding an element, do pairs of rotations bottom-up

Splay tree

- BST with a restructuring heuristic, called splaying
- after inserting or finding an element, do pairs of rotations bottom-up
- rotations depend on the structure of the path
- each pair of rotations shall be named a splaying step

Splay tree

- BST with a restructuring heuristic, called splaying
- after inserting or finding an element, do pairs of rotations bottom-up
- rotations depend on the structure of the path
- each pair of rotations shall be named a splaying step
- repeat splaying step on x until it is root

Splaying step - case 1: zig

- if $p(x)$, parent of x, is root of tree, rotate edge joining x with $p(x)$
- terminal case

GIHzürich

Example: zig

Splaying step - case 2: zig-zig

- $p(x)$ not the root
- $g(x)$ parent of $p(x)$
- x and $p(x)$ both right-children or both left-children
- rotate edge joining $p(x)$ with $g(x)$
- rotate edge joining $p(x)$ with x

GIHzürich

Example: zig-zig

Splaying step - case 3: zig-zag

- $p(x)$ not the root
- $g(x)$ parent of $p(x)$
- x left child and $p(x)$ right child or vice-versa
- rotate edge joining x with $p(x)$
- rotate edge joining x with $g(x)$

GIHzürich

Example: zig-zag

Example: splaying on a node

Example: splaying on a node (1)

Example: splaying on a node (2)

Example: splaying on a node (3)

Example: splaying on a node (4)

Complexity \& Analysis

- Why is splaying better than move to root heuristic?

Complexity \& Analysis

- Why is splaying better than move to root heuristic?
- if a node is at depth d on the splaying path, it will be at about $d / 2$ after the splay

Complexity \& Analysis

- Why is splaying better than move to root heuristic?
- if a node is at depth d on the splaying path, it will be at about $d / 2$ after the splay
- except the root, its child and the splayed node

Complexity \& Analysis II

- use the potential method
- $\Phi(T)=$ extra time that can be later consumed on tree T
- from T to T^{\prime} amortized time = actual_time $+\Phi\left(T^{\prime}\right)-\Phi(T)$

Complexity \& Analysis II

- amortized time $=$ actual_time $+\Phi\left(T^{\prime}\right)-\Phi(T)$
- if actual time < amortized time, increase potential
- if actual time > amortized time, decrease potential

GㅣIzürich

Analysis on M operations

$$
\begin{aligned}
& t_{1}+t_{2}+\ldots+t_{M}+\left(\Phi\left(T_{1}\right)-\Phi\left(T_{0}\right)\right)+\left(\Phi\left(T_{2}\right)-\Phi\left(T_{1}\right)\right)+\ldots+\left(\Phi\left(T_{M}\right)-\Phi\left(T_{M-1}\right)\right)= \\
& t_{1}+t_{2}+\ldots+t_{M}+\Phi\left(T_{M}\right)-\Phi\left(T_{0}\right)
\end{aligned}
$$

Potential function

- $\operatorname{size}(x)=$ number of nodes in the subtree rooted at x
- $\operatorname{rank}(x)=\log _{2}(\operatorname{size}(x))$
- $\Phi(T)=$ sum of ranks of nodes in subtree T

Potential function

Potential splaying

- only $x, p(x)$ and $g(x)$ change rank
- $\Delta \Phi=\operatorname{rank}_{i}(g)-\operatorname{rank}_{i-1}(g)+\operatorname{rank}_{i}(x)-\operatorname{rank}_{i-1}(x)+\operatorname{rank}_{i}(p)-\operatorname{rank}_{i-1}(p)$
- actual_cost $+\Delta \Phi \leq 3 *\left(\operatorname{rank}_{i}(x)-\operatorname{rank}_{i-1}(x)\right)+1$

Complexity \& Analysis III

- amortized time $=$ actual_cost $+\Delta \Phi \leq 3 *\left(\operatorname{rank}_{i}(x)-\operatorname{rank}_{i-1}(x)\right)+1$
- total time $O(m * \log (n))$

Analysis

Pros:

- no additional information stored in nodes
- not that hard to implement

Cons:

- at one point an operation can have $O(n)$ time
- problems with multithreading

Splitting a splay tree

- split(i, t): construct and return t_{1} and t_{2}
- elements in t_{1} smaller than i
- elements in t_{2} greater than i
- Ideas?

GIHzürich

How to split?

Joining two splay trees

- join(t1, t2): combine t_{1} and t_{2} into single tree
- elements in t_{1} smaller than elements in t_{2}
- Ideas?

GIHzürich

How to join?

Applications: Lexicographic Search Tree

Lexicographic Search Tree

- store a set S of strings
- repeated access operations are efficient

Example - Lexicographic Tree

Lexicographic Search Tree II

- ternary tree
- symbols in each node
- two types of edges
- middle (dashed)
- left \& right
- nodes in the tree correspond to prefixes of strings:
- concatenate symbols from which we leave by a dashed edge
- nodes connected by continuous edges form a binary search tree

Glizürich

Search for 'bats' (1)

EHzürich

Search for 'bats' (2)

EHzürich

Search for 'bats' (3)

GHzürich

Search for 'bats' (4)

EHIzürich

Search for 'bats' (5)

Using splaying

- rotation rearranges left and right child, but not the middle props
- splay at node x :
- similar with normal splay tree
- if node is middle child, continue with $p(x)$

Using splaying

- rotation rearranges left and right child, but not the middle props
- splay at node x :
- similar with normal splay tree
- if node is middle child, continue with $p(x)$
- after splaying, path from root to x contains only dashed edges

GHzürich

Insert 'car'

Glizürich

Insert 'car' (2)

Glizürich

Insert 'car' (3)

GIHzürich

Lex Tree splay

Glizürich

Lex Tree splay

Lex Tree analysis

- time of access is bounded by $|\sigma|$ plus number of right and left edges traversed
- $O\left(|\sigma|+\log _{2}(N)\right)$

Application: Link-Cut Trees

Link-Cut Trees

- abstract data structure for maintaining a forest of rooted trees
- the following operations should be supported
- find_root(v)
- cut(v)
- link(v, w)

Where are self-adjusting BSTs used?

- Java (TreeMap, TreeSet) and C++ (set, map)
- Java (TreeMap, TreeSet) and C++ (set, map)
- Linux CFS scheduler, which decides which tasks are executed when
- Java (TreeMap, TreeSet) and C++ (set, map)
- Linux CFS scheduler: decides which tasks are executed when
- memory allocators

Experiment 1: normal queries

Experiment 2: reduced set of query elements

Take-home message

- you probably use self-adjusting binary search trees every day :)
- it is useful to know how they work and how to implement one
- C++ STL or java.util cannot save you all the time

Potential function zig-zag

- only $x, p(x)$ and $g(x)$ change rank
- $\Delta \Phi=\operatorname{rank}^{\prime}(g)-\operatorname{rank}(g)+\operatorname{rank}^{\prime}(x)-\operatorname{rank}(x)+\operatorname{rank}^{\prime}(p)-\operatorname{rank}(p)=$ $\operatorname{rank}^{\prime}(g)-\operatorname{rank}(x)+\operatorname{rank}^{\prime}(p)-\operatorname{rank}(p) \leq \operatorname{rank}^{\prime}(g)+\operatorname{rank}^{\prime}(p)-2 * \operatorname{rank}(x)$
- $\operatorname{rank}^{\prime}(g)+\operatorname{rank}^{\prime}(p)-2 * \operatorname{rank}(x)+2-2 \leq\left[\operatorname{rank}^{\prime}(g)+\operatorname{rank}^{\prime}(p)-2 * \operatorname{rank}(x)\right]+$ $2 * \operatorname{rank}^{\prime}(x)-\operatorname{rank}(p)-\operatorname{rank}^{\prime}(g)-2 \leq 2 *\left(\operatorname{rank}^{\prime}(x)-\operatorname{rank}(x)\right)-2$

