
Sweet Little Lies
Fake Topologies for Flexible Routing

Nina Zinsli

1



Motivation

Goal: Send data packet from source to destination

A B

C D

source destination

2



Outline

Common Solutions for Network Routing

L Link-state Routing

L Software Defined Networks

Fibbing

L Using fake topologies for Network Routing

L Benefits & problems

Evaluation

3



Common solutions for Network Routing

4



Common solution

Link-state routing protocols

L widely used to steer network traffic

5



Link-state routing protocols

L every node has a map of the whole network

L compute forwarding path for every destination
(only needs to know next hop)

6



Constructing network map

Constructing the map from router A’s point of view:

A B

C D

2

10
1. determine neighbours
and cost of connection

link-state packet:

dist. from A

B 2

C 1

7



Constructing network map

Constructing the map from router A’s point of view:

A B

C D

2

10
1. determine neighbours
and cost of connection

link-state packet:

dist. from A

B 2

C 1

7



Constructing network map

Constructing the map from router A’s point of view:

A B

C D

2

1
2. Flood link state packet
through network

link-state packet:

dist. from A

B 2

C 1

8



Constructing network map

Constructing the map from router A’s point of view:

A B

C D

2

1
2. Flood link state packet
through network

link-state packet:

dist. from A

B 2

C 1

9



Constructing network map

Constructing the map from router A’s point of view:

A B

C D

2

1
2. Flood link state packet
through network

link-state packet:

dist. from A

B 2

C 1

10



Constructing network map

Constructing the map from router A’s point of view:

A B

C D

2

1
3. Receive link state packet
from other routers

link-state packets:

dist. from B

A 2

D 1

dist. from C

A 1

D 3

dist. from D

B 1

C 3

11



Constructing network map

Constructing the map from router A’s point of view:

A B

C D

2

1
3. Receive link state packet
from other routers

link-state packets:

dist. from B

A 2

D 1

dist. from C

A 1

D 3

dist. from D

B 1

C 3

11



Constructing network map

Constructing the map from router A’s point of view:

A B

C D

2

1 1

3

4. Construct network map
from link-state packets

� now A knows the whole topology

12



Constructing network map

Constructing the map from router A’s point of view:

A B

C D

2

1 1

3

4. Construct network map
from link-state packets

� now A knows the whole topology

12



Example OSPF (Open Shortest Path First)

L Widely used link-state protocol

L Routers learn about topology like shown before

L Find shortest path

13



OSPF example

A B

C D

source destination

12

10 4

3

1

1

Which path will OSPF
choose?

14



OSPF example

A B

C D

source destination

12

10 4

3

1

1

Which path will OSPF
choose?

14



We know the solution

A B

C D

source destination

12

10 4

3

1 1

15



Advantages of this approach

L implementations are robust and widely-deployed

L deterministic algorithm

L behaviour well-understood (no surprises!)

L messages are standardized (standard protocol)

16



We are highly dependent on the red link

A B

C D

source destination

12

10 4

3

1 1

17



Problems with OSPF

3 examples where OSPF is not ideal:

L link failure

L DDoS

L load balancing

18



Link Failure

What if the link from C to D fails?

19



Link Failure

A B

C D

source destination

X

20



Link failure

We want to have a backup plan to react fast and redirect the data:

A B

C D

source destination

X

21



DDoS attack

Distributed Denial of Service:

L attacker attempt to make an online service unavailable

L overwhelm it with traffic from multiple sources

L congest links

22



DDoS

A B

C D

source destination

23



DDoS

Link between C and D congested!

A B

C D

source destination

X

24



DDoS

What we want:

A B

C D

source destination

25



Load balancing

Huge amount of traffic from two sources
� we want to split it on two different paths

26



Load balancing

OSPF solution

A B

C D

source 1

source 2

destination 1

destination 2

0.25

0.75

27



Load balancing

What we want:

A B

C D

source 1

source 2

destination 1

destination 2

0.25

0.75

28



Better solution, maybe?

SDN (Software Defined Networks)

L can also be used to steer network traffic

L central controller chooses path for all traffic

L used by Google, Microsoft, . . .

L does not scale to big networks

L cannot be used with most current routers (e.g. Cisco)

29



Better solution, maybe?

SDN (Software Defined Networks)

L can also be used to steer network traffic

L central controller chooses path for all traffic

L used by Google, Microsoft, . . .

L does not scale to big networks

L cannot be used with most current routers (e.g. Cisco)

29



Better solution?

We want a solution which combines the benefits of both OSPF
and SDN!

30



Better solution?

What we want:

L scales to big networks

L no central controller

L routers calculate the paths

L more flexible than OSPF

L works on existing routers (no large deviations from OSPF)

31



Fibbing

32



Fibbing

to fib: to lie about something minor or unimportant

33



Solution: Fibbing

New way to make network routing more flexible.

� Shortest-Path-Violations

34



Solution: Fibbing

New way to make network routing more flexible.

� Shortest-Path-Violations

34



Solution: Fibbing

Idea: Show the routers a fake topology.

L add fake nodes to real topology (not physically)
� Router sees a different topology

How the network looks like:

R

AB

2

5

1

How R thinks the network
looks like:

R

AB

v
2

5

1

1

1

Router R computes shortest path on the second network

35



Solution: Fibbing

Idea: Show the routers a fake topology.

L add fake nodes to real topology (not physically)
� Router sees a different topology

How the network looks like:

R

AB

2

5

1

How R thinks the network
looks like:

R

AB

v
2

5

1

1

1

Router R computes shortest path on the second network

35



Solution: Fibbing

Idea: Show the routers a fake topology.

L add fake nodes to real topology (not physically)
� Router sees a different topology

How the network looks like:

R

AB

2

5

1

How R thinks the network
looks like:

R

AB

v
2

5

1

1

1

Router R computes shortest path on the second network

35



Solution: Fibbing

Idea: Show the routers a fake topology.

L add fake nodes to real topology (not physically)
� Router sees a different topology

How the network looks like:

R

AB

2

5

1

How R thinks the network
looks like:

R

AB

v
2

5

1

1

1

Router R computes shortest path on the second network

35



Solution: Fibbing

Idea: Show the routers a fake topology.

L add fake nodes to real topology (not physically)
� Router sees a different topology

How the network looks like:

R

AB

2

5

1

How R thinks the network
looks like:

R

AB

v
2

5

1

1

1

Router R computes shortest path on the second network

35



Fibbing

This allows us to make Router R choose a path which is not
the shortest.
(if a path with a fake node is shorter)

But a data packet cannot be sent over a fake node /

36



Fibbing

This allows us to make Router R choose a path which is not
the shortest.
(if a path with a fake node is shorter)

But a data packet cannot be sent over a fake node /

36



Fibbing

Assume R wants so send a packet to B:

Shortest path in real net-
work:

R

AB
5

1

2

1

Fake network:

R

AB

v
2

5

1

1

1

37



Fibbing

Assume R wants so send a packet to B:

Shortest path in real net-
work:

R

AB
5

1

2

1

Shortest path in fake net-
work:

R

AB

v
2

5

1

11

38



Fibbing

Fibbing redirects data over existing link:

Shortest path in real net-
work:

R

AB
5

1

2

1

Shortest path in fake net-
work:

R

AB

v
2

5

1

39



The Fibbing controller

L announces fake node to routers
L local (seen by single router)
L global (seen by all routers)

L chooses them such that routers send traffic over desired path

40



The Fibbing controller

L just used to insert fake nodes!
does not compute paths

L mostly only a few Shortest-Path-Violations

L multiple controllers can be used for different subnets

� Fibbing controller can be used in big networks

41



The Fibbing controller

L just used to insert fake nodes!
does not compute paths

L mostly only a few Shortest-Path-Violations

L multiple controllers can be used for different subnets

� Fibbing controller can be used in big networks

41



Input

Physical topology

+

desired path

42



Input

Physical topology

+

desired path

42



Output

Physical topology

+

desired path

�

Topology with fake nodes

43



How fibbing solves all three problems

44



Load Balancing Example

45



Fibbing is expressive

Good news:

Theorem Any set of desired paths can be enforced by Fibbing.

46



How Fibbing works

2 Algorithms:

1. Simple

2. Merge

47



Simple

L is used if we want to react fast

L local fake node for every shortest-path violation

L might introduce a lot of new fake nodes!

48



Simple

L is used if we want to react fast

L local fake node for every shortest-path violation

L might introduce a lot of new fake nodes!

48



Simple

L is used if we want to react fast

L local fake node for every shortest-path violation

L might introduce a lot of new fake nodes!

48



Merge

L is used to reduce the number of fake nodes

L can be used to compute backup plans

L can be used after Simple to clean up

49



Merge

Goal: Merge local fake nodes to global fake nodes whenever
possible to reduce number of fake nodes

L for every local fake node, safe the minimum and maximum
weight

L take two nodes together if possible

50



Merge

Goal: Merge local fake nodes to global fake nodes whenever
possible to reduce number of fake nodes

L for every local fake node, safe the minimum and maximum
weight

L take two nodes together if possible

50



Problems with implementation

L with current routers not possible to lie about direct neighbour

L if desired path differs from shortest path in the first hop, we
can not achieve it

L with small changes in routers it should be possible

51



Problems with implementation

L with current routers not possible to lie about direct neighbour

L if desired path differs from shortest path in the first hop, we
can not achieve it

L with small changes in routers it should be possible

51



Problems with implementation

L with current routers not possible to lie about direct neighbour

L if desired path differs from shortest path in the first hop, we
can not achieve it

L with small changes in routers it should be possible

51



Evaluation

52



Evaluation

L test how number of desired Shortest-Path-Violations affects
number of fake nodes

53



Evaluation

L X: Median # of nodes

L j: Median # of edges

L solid bar: 95th
percentile

L dashed bar: 5th
percentile

L real network (AS
6461, 141 nodes, 748
edges)

L random desired paths

54



Evaluation

L X: Median # of nodes

L j: Median # of edges

L solid bar: 95th
percentile

L dashed bar: 5th
percentile

L real network (AS
6461, 141 nodes, 748
edges)

L random desired paths

54



Evaluation

L not many fake
components needed,
max # nodes: 5,
edges: 26

L not strictly increasing

55



Memory and Time

small memory and CPU
overhead

56



Conclusion

L Fibbing achieves what we want:
more flexible routing with few overhead

L tests on small networks seem to work

57



Conclusion

L Fibbing achieves what we want:
more flexible routing with few overhead

L tests on small networks seem to work

57



Problems

L Fibbing controller takes desired path as an input, does not
find an alternative path itself

L We know that Fibbing always works, but there are no
guarantees for speed and number of fake nodes

58



Questions

59


	Common solutions for Network Routing
	Fibbing
	Evaluation

