Sweet Little Lies
Fake Topologies for Flexible Routing

Nina Zinsli

Motivation

Goal: Send data packet from source to destination

s he

source destination

Outline

Common Solutions for Network Routing
» Link-state Routing
» Software Defined Networks
Fibbing
» Using fake topologies for Network Routing
» Benefits & problems

Evaluation

Common solutions for Network Routing

Common solution

Link-state routing protocols

» widely used to steer network traffic

Link-state routing protocols

» every node has a map of the whole network

» compute forwarding path for every destination
(only needs to know next hop)

Constructing network map

Constructing the map from router A's point of view:

—®
©—0©

1. determine neighbours
and cost of connection

Constructing network map

Constructing the map from router A's point of view:

" (8)
1. determine neighbours
10 .
and cost of connection

dist. from A
link-state packet: B 2
C 1

Constructing network map

Constructing the map from router A's point of view:

—(8)
2. Flood link state packet
t through network

dist. from A
link-state packet: B 2
C 1

Constructing network map

Constructing the map from router A’s point of view:

—(&)
2. Flood link state packet
1 through network

dist. from A

link-state packet: B 2
C 1

Constructing network map

Constructing the map from router A’s point of view:

(&)
2. Flood link state packet
1 through network

dist. from A

link-state packet: B 2
C 1

Constructing network map

Constructing the map from router A's point of view:

=0,
3. Receive link state packet
from other routers

11

Constructing network map
Constructing the map from router A's point of view:

—e)

3. Receive link state packet

L from other routers
link-state packets:
dist. from B dist. from C dist. from D
A 2 A 1 B 1

D 1 D 3 C 3

Constructing network map

Constructing the map from router A's point of view:

—(®)
1 1

©——@

4. Construct network map
from link-state packets

12

Constructing network map

Constructing the map from router A's point of view:
~(8)
4. Construct network map
1 1 from link-state packets
(c)——(o)

= now A knows the whole topology

12

Example OSPF (Open Shortest Path First)

» Widely used link-state protocol
» Routers learn about topology like shown before
» Find shortest path

13

OSPF example

source destination

14

OSPF example

Which path will OSPF

@; @ choose?

source destination

14

We know the solution

5 (B

7/ :

source destination

15

Advantages of this approach

» implementations are robust and widely-deployed
» deterministic algorithm
» behaviour well-understood (no surprises!)

» messages are standardized (standard protocol)

16

We are highly dependent on the red link

5 (B

7 :

source destination

17

Problems with OSPF

3 examples where OSPF is not ideal:

» link failure
» DDoS
» load balancing

18

Link Failure

What if the link from C to D fails?

19

Link Failure

source

destination

20

Link failure

We want to have a backup plan to react fast and redirect the data:
O

source destination

21

DDoS attack

Distributed Denial of Service:
» attacker attempt to make an online service unavailable
» overwhelm it with traffic from multiple sources

» congest links

22

DDoS

O,

(—®
o !

source

destination

23

DDoS

Link between C and D congested!

source

destination

24

DDoS

What we want:

C

s

source

e
\D)

destination

25

Load balancing

Huge amount of traffic from two sources
= we want to split it on two different paths

26

Load balancing

OSPF solution

A e

0.25
S

destination 2
0.75

source 1 destination 1

source 2

27

Load balancing

What we want:

(@QB

0.25

D ®—

destination 2
0.75

source 1 destination 1

source 2

28

Better solution, maybe?

SDN (Software Defined Networks)
» can also be used to steer network traffic
» central controller chooses path for all traffic

» used by Google, Microsoft, ...

29

Better solution, maybe?

SDN (Software Defined Networks)

»

»

>

>

can also be used to steer network traffic
central controller chooses path for all traffic
used by Google, Microsoft, ...

does not scale to big networks

cannot be used with most current routers (e.g. Cisco)

29

Better solution?

We want a solution which combines the benefits of both OSPF
and SDN!

30

Better solution?

What we want:

»

»

>

scales to big networks

no central controller
routers calculate the paths
more flexible than OSPF

works on existing routers (no large deviations from OSPF)

31

Fibbing

32

Fibbing

to fib: to lie about something minor or unimportant

33

Solution: Fibbing

New way to make network routing more flexible.

34

Solution: Fibbing

New way to make network routing more flexible.

= Shortest-Path-Violations

34

Solution: Fibbing

Idea: Show the routers a fake topology.

35

Solution: Fibbing

Idea: Show the routers a fake topology.

» add fake nodes to real topology (not physically)
= Router sees a different topology

35

Solution: Fibbing

Idea: Show the routers a fake topology.

» add fake nodes to real topology (not physically)
= Router sees a different topology

How the network looks like:

O=mO,

35

Solution: Fibbing

Idea: Show the routers a fake topology.

» add fake nodes to real topology (not physically)
= Router sees a different topology

How the network looks like: How R thinks the network
looks like:

35

Solution: Fibbing

Idea: Show the routers a fake topology.

» add fake nodes to real topology (not physically)
= Router sees a different topology

How the network looks like: How R thinks the network
looks like:

Router R computes shortest path on the second network

35

Fibbing

This allows us to make Router R choose a path which is not
the shortest.
(if a path with a fake node is shorter)

36

Fibbing

This allows us to make Router R choose a path which is not
the shortest.

(if a path with a fake node is shorter)

But a data packet cannot be sent over a fake node &

36

Fibbing

Assume R wants so send a packet to B:

Shortest path in real net-

Fake network:
work:

37

Fibbing

Assume R wants so send a packet to B:

Shortest path in real net- Shortest path in fake net-
work: work:

8 @

& E&+®

38

Fibbing

Fibbing redirects data over existing link:

Shortest path in real net- Shortest path in fake net-
work: work:

39

The Fibbing controller

» announces fake node to routers

» local (seen by single router)
» global (seen by all routers)

» chooses them such that routers send traffic over desired path

40

The Fibbing controller

» just used to insert fake nodes!
does not compute paths

» mostly only a few Shortest-Path-Violations

» multiple controllers can be used for different subnets

41

The Fibbing controller

» just used to insert fake nodes!
does not compute paths

» mostly only a few Shortest-Path-Violations

» multiple controllers can be used for different subnets

= Fibbing controller can be used in big networks

41

Input

42

Input

Physical topology

desired path
O—
04?/0\0
O

42

Output

Physical topology desired path

EA S

C%ﬁ) O ﬁ) @
O
Topology with fake nodes

. &?@

43

How fibbing solves all three problems

44

Load Balancing Example

(a) Topology

Throughput (Mbps)

| — flow1
| | == flow2

1 T T Ll
0 5 10 16 20 25
Time (s)

(b) Throughput evolution

45

Fibbing is expressive

Good news:

Theorem Any set of desired paths can be enforced by Fibbing.

46

How Fibbing works

2 Algorithms:
1. Simple
2. Merge

47

Simple

48

Simple

» is used if we want to react fast

» local fake node for every shortest-path violation

48

Simple

» is used if we want to react fast
» local fake node for every shortest-path violation

» might introduce a lot of new fake nodes!

48

Merge

» is used to reduce the number of fake nodes
» can be used to compute backup plans

» can be used after Simple to clean up

49

Merge

Goal: Merge local fake nodes to global fake nodes whenever
possible to reduce number of fake nodes

50

Merge

Goal: Merge local fake nodes to global fake nodes whenever
possible to reduce number of fake nodes

» for every local fake node, safe the minimum and maximum
weight

» take two nodes together if possible

50

Problems with implementation

51

Problems with implementation

» with current routers not possible to lie about direct neighbour

» if desired path differs from shortest path in the first hop, we
can not achieve it

51

Problems with implementation

» with current routers not possible to lie about direct neighbour

» if desired path differs from shortest path in the first hop, we
can not achieve it

» with small changes in routers it should be possible

51

Evaluation

52

Evaluation

» test how number of desired Shortest-Path-Violations affects
number of fake nodes

53

Evaluation

of fake topology components

L

T
5

T T T T
10 15 20 25

IGP shortest path violations

v

o: Median # of nodes
O: Median # of edges

solid bar: 95th
percentile

dashed bar: 5th
percentile

54

Evaluation

of fake topology components

[ER A

NN

T T T T
5 10 15 20

IGP shortest path violations

T
25

o: Median # of nodes
O: Median # of edges

solid bar: 95th
percentile

dashed bar: 5th
percentile

real network (AS
6461, 141 nodes, 748
edges)

random desired paths

54

Evaluation

of fake topology components

50

20

10

“|-e= nodes
-@- edges

TN

5 10 15 20 25

IGP shortest path violations

» not many fake
components needed,
max # nodes: 5,
edges: 26

» not strictly increasing

55

Memory and Time

fake nodes RIB memory (MB)

OSPF memory (MB)

1,000 0.09 0.56
5,000 5.19
10,000 10.96
50,000 56.37
100,000 113.17

small memory and CPU

overhead
fake nodes installation time (s) avg time/entry (us)
1,000 0.89 886.00
5,000 4.46 891.40
10,000 8.96 894.50
50,000 44.74 894.78
100,000 89.50 894.08

56

Conclusion

» Fibbing achieves what we want:
more flexible routing with few overhead

57

Conclusion

» Fibbing achieves what we want:
more flexible routing with few overhead

» tests on small networks seem to work

57

Problems

» Fibbing controller takes desired path as an input, does not
find an alternative path itself

» We know that Fibbing always works, but there are no
guarantees for speed and number of fake nodes

58

Questions

59

	Common solutions for Network Routing
	Fibbing
	Evaluation

