Bitcoin Privacy

João Pedro Monteiro

Overview

1. What is Bitcoin?
2. Privacy Issues
3. ZeroCoin
4. eZC: ZeroCoin Reloaded

What is Bitcoin?

"We're in the $21^{\text {st }}$ Century and I can call someone in Indonesia, see him on screen and talk to him for free...
"We're in the $21^{\text {st }}$ Century and I can call someone in Indonesia, see him on screen and talk to him for free...
... and yet I can't send him 1 cent."
(Wences Casares, Xapo CEO)

WikiLeaks now accepts anonymous Bitcoin donations on
1HB5XMLmzFVj8ALj6mfBsbifRoD4miY36v
KAVORITES

RETWEETS
289

4:12 PM - 14 Jun 2011

WikiLeaks Addresses are identifiers which you use to send bitcoins to another person.

Summary	
Address	1HB5XMLmzFVj8ALj6mfBsbifRoD4miY36v
Hash 160	b169f2b0b866db05900b93a5d76345f18d3afb24
Tools	Taint Analysis - Related Tags - Unspent Outputs

Transactlons	
No. Transactions	2931
Total Received	$\$ 955,004.61$
Final Balance	$\$ 143.31$

Request Payment Donation Button

PayPal stops payment delivery to Mega, citing 'business reasons'

By Russell Brandom on February 27,201504:25 pm © Email @russellbrandom

Kim Dotcom
@KimDotcom
Let's give Bitcoin a boost :-) \#Mega
6:39 AM - 27 Feb 2015 7,636 Retweets 687 Favorites क 七七

Transactions

Transactions

Transactions

Transactions

Transactions

Transactions

In a centralized system...

In a decentralized system...

In a decentralized system...

Key Triplets

Who can spend the created outputs?

Who can spend the created outputs?

Standard Transaction to Bitcoin address (pay-to-pubkey-hash)

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG scriptSig: <sig> <pubKey>

```
"txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",
```

"version" : 1,
"locktime" : 0,
"vin" : [
\{
"txid" : "d3c7e022ea80c4808e64dd0a1dba009f3eaee2318a4ece562f8ef815952717d7",
"vout" : 0,
"scriptSig" : \{
"asm" :
"3045022100a4ebbeec83225dedead659bbde7da3d026c8b8e12e61a2df0dd0758e227383b302203301768ef878007e9ef7c304f70ffaf1f2c975b192d34c5bgb2ac1bd193dfba20104793ac8a58ea751f9710e39aad2e2 "hex":
'483045022100a4ebbeec83225dedead659bbde7da3d026c8b8e12e61a2df0dd0758e227383b302203301768ef878007e9ef7c304f70ffaf1f2c975b192d34c5bgb2ac1bd193dfba2014104793ac8a58ea751f9710e39aa \},
"sequence" : 4294967295
\}
],
"vout" : [
\{
"value" : 0.05000000,
"n": 0,
"scriptPubKey" : \{
"asm" : "OP_DUP OP_HASH160 07bdb518fa2e6089fd810235cf1100c9c13d1fd2 OP_EQUALVERIFY OP_CHECKSIG",
"hex" : "76a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac",
"reqSigs" : 1 ,
"type" : "pubkeyhash",
"addresses" : [
"1hvzSofGwT8cjb8JU7nBsCSfEVQX5ugCL"
]
\}
\},
"value" : 1.03362847,
"n" : 1,
"scriptPubKey" : \{
"asm" : "OP_DUP OP_HASH160 10767086b31518935c8d28703d66d09b36231343 OP_EQUALVERIFY OP_CHECKSIC",
"hex" : "76a914107b7086b31518935c8d28703d66d09b3623134388ac",
"reqSigs" : 1 ,
"type": "pubkeyhash",
"addresses" : [
"12W9goQ3P7Waw5JH8fRVs1e2rVAKoGnvoy"
]
\}
\}
]

Privacy Issues with Bitcoin

Isn't Bitcoin anonymous?!

Isn't Bitcoin anonymous?!

Isn't Bitcoin anonymous?!

Isn't Bitcoin anonymous?!

Why Anonymity?

"What we used to call liberty and freedom

> we now call privacy."
(Jacob Appelbaum)

WikiLeaks now accepts anonymous
Bitcoin donations on
1HB5XMLmzFVj8ALj6mfBsbifRoD4miY36v

RETWEETS FAVORITES
289
Kim Dotcom $*$

Why Anonymity?

"What we used to call liberty and freedom

> we now call privacy."
(Jacob Appelbaum)
+2 Follow

Kim Dotcom $*$
WikiLeaks now accepts anonymous ??
Bitcoin donations on
1HB5XMLmzFVj8ALj6mfBsbifRoD4miY36v

RETWEETS FAVORITES
289

But... how?

- Mixing Services

But... how?

ZeroCoin

or "how to prove you have money without showing it"

Alice

Alice

Basic Idea

- 4 operations
- $\operatorname{setup}()$
- mint()
- spend()
- verify()

$\operatorname{mint}()$

$\operatorname{mint}()$

$\operatorname{mint}()$

Alice

spend()

spend()

$$
\begin{aligned}
& \text { proof }
\end{aligned}
$$

spend()

spend()

spend()

$\equiv=$ Bitcoin
verify()

Challenges?

Cryptographic Building Blocks

- Commitment Scheme
- Zero-Knowledge Proofs
- Accumulator

Commitment Scheme

- "How would you flip a coin over the phone?"

1. flips coin $=x$

1. flips coin $=\mathrm{x}$
 2. random r_{A}

1. flips coin $=\mathrm{x}$
 2. random r_{A}
 3. $\mathrm{h}\left(\mathrm{x}, \mathrm{r}_{\mathrm{A}}\right)$

Alice

1. flips coin $=x$

2. random r_{A}
3. $\mathrm{h}\left(\mathrm{x}, \mathrm{r}_{\mathrm{A}}\right)$
4. chooses y

1. flips coin $=x$

2. random r_{A}
3. $\mathrm{h}\left(\mathrm{x}, \mathrm{r}_{\mathrm{A}}\right)$
4. chooses y
5. $\mathrm{x}, \mathrm{r}_{\mathrm{A}}$

1. flips coin $=x$

2. random r_{A}
3. $\mathrm{h}\left(\mathrm{x}, \mathrm{r}_{\mathrm{A}}\right)$

4. chooses y

$$
\text { 5. } \mathrm{x}, \mathrm{r}_{\mathrm{A}}
$$

$$
\mathrm{h}\left(\mathrm{x}, \mathrm{r}_{\mathrm{A}}\right)=\mathrm{h}\left(\mathrm{y}, \mathrm{r}_{\mathrm{A}}\right)
$$

Pedersen Commitment Scheme (*)

- group $\mathrm{G}=<\mathrm{g}>=<\mathrm{h}>$

Pedersen Commitment Scheme (*)

- group $\mathrm{G}=<\mathrm{g}>=<\mathrm{h}>$
- commit to value s:
choose random r

$$
\begin{aligned}
& \mathrm{pub}=\mathrm{g}^{\mathrm{s}} \mathrm{~h}^{\mathrm{r}} \\
& \mathrm{sec}=(\mathrm{s}, \mathrm{r})
\end{aligned}
$$

(*) simplified

Zero-Knowledge Proofs

Interactive Zero-Knowledge Proofs

Interactive Zero-Knowledge Proofs

Interactive Zero-Knowledge Proofs

Non-Interactive Zero-Knowledge Proofs

- Fiat-Shamir Heuristic
- can be used as a Signature of Knowledge (ZKSoK)

Accumulator

- Given: $\mathrm{C}:=\left\{\operatorname{pub}_{\mathrm{zc}, \mathrm{i}} \mid \mathrm{i}=1, \ldots, \mathrm{n}\right\}$
- Show: "I know pub $b_{z, j} \in \mathbf{C}$ " without revealing it

Accumulator

- Given: $\mathrm{C}:=\left\{\operatorname{pub}_{\mathrm{zc}, \mathrm{i}} \mid \mathrm{i}=1, \ldots, \mathrm{n}\right\}$
- Show: "I know pub $b_{z, j, j} \in \mathbf{C}$ " without revealing it

$$
\left(\operatorname{pub}_{\mathrm{zc}, \mathrm{j}}=\operatorname{pub}_{\mathrm{zc}, 1}\right) \vee \ldots \vee\left(\mathrm{pub}_{\mathrm{zc}, \mathrm{j}}=\operatorname{pub}_{\mathrm{zc}, \mathrm{n}}\right)
$$

Accumulator

- Given: $\mathbf{C}:=\left\{\operatorname{pub}_{\mathrm{zc}, \mathrm{i}} \mid \mathrm{i}=1, \ldots, \mathrm{n}\right\}$
- Show: "I know pub $\mathrm{bc}, \mathrm{j}^{\mathrm{I}} \mathrm{C}$ " without revealing it

Accumulator

- Given: $\mathrm{C}:=\left\{\operatorname{pub}_{\mathrm{zc}, \mathrm{i}} \mid \mathrm{i}=1, \ldots, \mathrm{n}\right\}$
- Show: "I know pub $\mathrm{z}_{\mathrm{c}, \mathrm{j}} \in \mathbf{C}$ " without revealing it

Accumulator

- Given: $\mathrm{C}:=\left\{\operatorname{pub}_{\mathrm{zc}, \mathrm{i}} \mid \mathrm{i}=1, \ldots, \mathrm{n}\right\}$
- Show: "I know pub $b_{z, j, j} \in \mathbf{C}$ " without revealing it public one-way accumulator:

$$
\operatorname{Acc}=\operatorname{accumulate}(\mathbf{C})
$$

Accumulator

- Given: $\mathrm{C}:=\left\{\operatorname{pub}_{\mathrm{zc}, \mathrm{i}} \mid \mathrm{i}=1, \ldots, \mathrm{n}\right\}$
- Show: "I know pub $\mathrm{zc}_{\mathrm{c}, \mathrm{j}} \in \mathbf{C}$ " without revealing it public one-way accumulator:

Acc $=\operatorname{accumulate}(\mathbf{C})$
wit $=$ generateWitness $(\mathbf{C}$, value $)$

Accumulator

- Given: $\mathrm{C}:=\left\{\operatorname{pub}_{\mathrm{zc}, \mathrm{i}} \mid \mathrm{i}=1, \ldots, \mathrm{n}\right\}$
- Show: "I know pub $\mathrm{zc}_{\mathrm{c}, \mathrm{j}} \in \mathbf{C}$ " without revealing it public one-way accumulator:

Acc $=\operatorname{accumulate}(\mathbf{C})$
wit $=$ generateWitness $(\mathbf{C}$, value $)$ accVerify(Acc, value, wit) $\rightarrow\{0,1\}$

Accumulator

- Given: $\mathrm{C}:=\left\{\operatorname{pub}_{\mathrm{zc}, \mathrm{i}} \mid \mathrm{i}=1, \ldots, \mathrm{n}\right\}$
- Show: "I know pub $b_{z, j, j} \in \mathbf{C}$ " without revealing it public one-way accumulator:

$$
\operatorname{Acc}=\operatorname{accumulate}(\mathbf{C})=\prod_{i=1}^{n} \operatorname{pub}_{\mathrm{zc}, \mathrm{i}}
$$

Accumulator

- Given: $\mathbf{C}:=\left\{\operatorname{pub}_{\mathrm{zc}, \mathrm{i}} \mid \mathrm{i}=1, \ldots, \mathrm{n}\right\}$
- Show: "I know pub ${ }_{z c, j} \in \mathbf{C}$ " without revealing it public one-way accumulator:

$$
\operatorname{Acc}=\operatorname{accumulate}(\mathbf{C})=\prod_{i=1}^{n} \operatorname{pub}_{\mathrm{zc}, \mathrm{i}}
$$

Accumulator (*)

- Given: $\mathbf{C}:=\left\{\operatorname{pub}_{\mathrm{zc}, \mathrm{i}} \mid \mathrm{i}=1, \ldots, \mathrm{n}\right\}$
- Show: "I know pub ${ }_{z c, j} \in \mathbf{C}$ " without revealing it public one-way accumulator:

$$
\operatorname{Acc}=\operatorname{accumulate}(\mathbf{C})=\mathbf{u}^{\prod_{i=1}^{n} \operatorname{pub}_{z_{\mathrm{z}, \mathrm{i}}}}
$$

$\operatorname{Acc}=\operatorname{accumulate}(\mathbf{C})=\mathbf{u}^{\prod_{i=1}^{n} \operatorname{pub}_{\mathrm{ze}, \mathrm{i}}}$

$\operatorname{Acc}=\operatorname{accumulate}(\mathbf{C})={\prod^{i=1}}_{n^{n} \operatorname{pub}_{u, i},}$

 wit $=\operatorname{generateWitness}(\mathbf{C}$, value $)=\operatorname{accumulate}(\mathbf{C} \backslash\{$ value $\})$$$
\operatorname{Acc}=\operatorname{accumulate}(\mathbf{C})=\mathbf{u}^{\prod_{i=1}^{n} \operatorname{pub}_{\mathrm{ze}, \mathrm{i}}}
$$

wit $=\operatorname{generateWitness}(\mathbf{C}$, value $)=\operatorname{accumulate}(\mathbf{C} \backslash\{$ value $\})$
$\operatorname{acc} \operatorname{Verify}(A c c$, value, wit $)=1$ iff witvalue $=$ Acc

ZeroCoin Protocol

- 4 operations
$-\operatorname{setup}()$
$-\operatorname{mint}()$
- spend()
- verify()

$\operatorname{setup}()$

- setup accumulator
- setup commitment parameters

$$
\mathrm{G}=\langle\mathrm{g}\rangle=<\mathrm{h}\rangle
$$

$$
\operatorname{mint}\left(\mathrm{I}_{\mathrm{btc}}\right) \rightarrow\left(\mathrm{pub}_{\mathrm{zc}}, \sec _{\mathrm{zc}}\right)
$$

- commit to value s:

$$
\begin{aligned}
& \text { choose random } \mathrm{r} \\
& \operatorname{pub}_{\mathrm{zc}}=\mathrm{gs}^{\mathrm{r}} \\
& \mathrm{sec}_{\mathrm{zc}}=(\mathrm{s}, \mathrm{r})
\end{aligned}
$$

$\operatorname{spend}\left(\operatorname{pub}_{\mathrm{zc}}, \sec _{\mathrm{zc}}, \mathrm{C}, \mathrm{O}_{\mathrm{btc}}\right) \rightarrow(\pi, \mathrm{s})$

- Acc $=$ accumulate (\mathbf{C})
$\operatorname{spend}\left(\operatorname{pub}_{\mathrm{zc}}, \sec _{\mathrm{zc}}, \mathrm{C}, \mathrm{O}_{\mathrm{btc}}\right) \rightarrow(\pi, \mathrm{s})$
- Acc $=$ accumulate (\mathbf{C})
- wit $=$ generateWitness(\mathbf{C}, pub $\left._{z c}\right)$
$\operatorname{spend}\left(\operatorname{pub}_{\mathrm{zc}}, \sec _{\mathrm{zc}}, \mathrm{C}, \mathrm{O}_{\mathrm{btc}}\right) \rightarrow(\pi, \mathrm{s})$
- Acc $=\operatorname{accumulate}(\mathbf{C})$
- wit $=$ generateWitness(\mathbf{C}, pub $\left._{z c}\right)$
- s in $\sec _{\mathrm{zc}}=(\mathrm{s}, \mathrm{r})$
$\operatorname{spend}\left(\operatorname{pub}_{\mathrm{zc}}, \sec _{\mathrm{zc}}, \mathrm{C}, \mathrm{O}_{\mathrm{btc}}\right) \rightarrow(\pi, \mathrm{s})$
- Acc $=\operatorname{accumulate}(\mathbf{C})$
- wit $=$ generateWitness(\mathbf{C}, pub $\left._{z c}\right)$
- s in $\sec _{\mathrm{zc}}=(\mathrm{s}, \mathrm{r})$
- $\pi=$ ZKSoK $\left[\mathrm{O}_{\text {btc }}\right]\{\ldots\}$
$\operatorname{spend}\left(\operatorname{pub}_{\mathrm{zc}}, \sec _{\mathrm{zc}}, \mathrm{C}, \mathrm{O}_{\mathrm{btc}}\right) \rightarrow(\pi, \mathrm{s})$
- Acc $=$ accumulate (\mathbf{C})
- wit $=$ generateWitness(\mathbf{C}, pub $\left._{z c}\right)$
- s in $\mathrm{sec}_{\mathrm{zc}}=(\mathrm{s}, \mathrm{r})$
- $\pi=$ ZKSoK $\left[\mathrm{O}_{\mathrm{btc}}\right]\left\{\left(\mathrm{pub}_{z \mathrm{c}}\right.\right.$, wit, r$):$

"I know one $\mathrm{pub}_{z \mathrm{c}}$ in \mathbf{C} "
$\operatorname{spend}\left(\operatorname{pub}_{\mathrm{zc}}, \sec _{\mathrm{zc}}, \mathbf{C}, \mathrm{O}_{\mathrm{btc}}\right) \rightarrow(\pi, \mathrm{s})$
- Acc $=$ accumulate (\mathbf{C})
- wit $=$ generateWitness($\left.\mathbf{C}, \operatorname{pub}_{z c}\right)$
- s in $\mathrm{sec}_{\mathrm{zc}}=(\mathrm{s}, \mathrm{r})$
- $\pi=$ ZKSoK $\left[\mathrm{O}_{\mathrm{btc}}\right]\left\{\left(\mathrm{pub}_{z \mathrm{c}}\right.\right.$, wit, r$):$

"I know one $\mathrm{pub}_{z \mathrm{c}}$ in \mathbf{C} "
"I know its construction"

$\operatorname{verify}\left(\pi, \mathrm{s}, \mathrm{O}_{\mathrm{btc}}, \mathbf{C}\right) \rightarrow\{0,1\}$

- verify if s unspent
- verify correctness of π as a signature on $\mathrm{O}_{b t c}$

Remarks

- accumulator checkpoint
- proof size \rightarrow memory issues
- proof complexity \rightarrow longer verification time

One more thing...

Is ZeroCoin enough?

eZC: ZeroCoin Reloaded

New Ideas

New Ideas

New Ideas

amount $=10 \mathrm{BTC}$
amount $=10 \mathrm{BTC}$

New Ideas

But... How?

- 5 operations:
- $\operatorname{setup}()$
$-\operatorname{mint}($ amount $)$
- spendEZCtoBTC()
- spendEZCtoEZC()
- verify()

setup()

$$
\mathrm{G}=\langle\mathrm{g}\rangle=\langle\mathrm{h}\rangle=<\mathrm{w}\rangle
$$

$\operatorname{mint}\left(I_{b t c}\right) \rightarrow\left(\pi_{\mathrm{pub}}, \mathrm{pub}_{\mathrm{ezc}}, \sec _{\mathrm{ezc}}\right)$

- commit to value s and transaction amount (a):

$$
\begin{aligned}
& \operatorname{pub}_{\mathrm{ezc}}=\mathrm{gs}^{\mathrm{s}} \mathrm{~h}^{\mathrm{r}} \mathrm{w}^{\mathrm{a}} \\
& \mathrm{sec}_{\mathrm{ezc}}=(\mathrm{s}, \mathrm{r})
\end{aligned}
$$

$$
\pi_{\mathrm{pub}}=\operatorname{ZKPoK}\left\{(\mathrm{s}, \mathrm{r}): \operatorname{pub}_{\mathrm{ezc}}=\mathrm{g}^{\mathrm{s}} \mathrm{~h}^{\mathrm{r}} \mathrm{w}^{\mathrm{a}}\right\}
$$

spendEZCtoEZC

1. Proves $\mathrm{eZC's}_{\text {send }}$ validity
2. Mints $\mathrm{EZC}_{\text {change }}$
3. Pre-mints $\mathrm{eZC}_{\text {receive }}$
4. Mints $\mathrm{eZC}_{\text {receive }}$

Transactions Revisited

Conclusion

Thank You

Tip if you enjoyed it!

