Audio Fingerprinting

Video Fingerprinting

<ロト < 母 > < 臣 > < 臣 > 臣 の へ つ 1/53

Conclusion

FINGERPRINTING Audio and Video Detection Systems

Speaker: Matteo Pozzetti Supervisor: Laura Peer

01 April 2015

Audio Fingerprinting

Video Fingerprinting

< □ > < □ > < □ > < Ξ > < Ξ > Ξ - のへで 2/53

Conclusion

OVERVIEW

- **2** Audio Fingerprinting
- **3** VIDEO FINGERPRINTING
- **4** CONCLUSION

Audio Fingerprinting

Video Fingerprinting

Conclusion

Introduction

<□ > < @ > < E > < E > E の Q @ 3/53

Video Fingerprinting

Conclusion

FINGERPRINTING

Content based fingerprinting:

• Algorithm that maps a multimedia object into a compact digital summary (set of hashes)

FINGERPRINTING

- Algorithm that maps a multimedia object into a compact digital summary (set of hashes)
- Used to retrieve such an object in a database

FINGERPRINTING

- Algorithm that maps a multimedia object into a compact digital summary (set of hashes)
- Used to retrieve such an object in a database
- Applications:

FINGERPRINTING

- Algorithm that maps a multimedia object into a compact digital summary (set of hashes)
- Used to retrieve such an object in a database
- Applications:
 - Search engines (Shazam)

FINGERPRINTING

- Algorithm that maps a multimedia object into a compact digital summary (set of hashes)
- Used to retrieve such an object in a database
- Applications:
 - Search engines (Shazam)
 - Copyright protection (YouTube)

FINGERPRINTING

Content based fingerprinting:

- Algorithm that maps a multimedia object into a compact digital summary (set of hashes)
- Used to retrieve such an object in a database
- Applications:
 - Search engines (Shazam)
 - Copyright protection (YouTube)

REQUIREMENTS

A fingerprint algorithm must be noise resistant and computationally efficient.

Audio Fingerprinting

Video Fingerprinting

Conclusion

TABLE OF CONTENTS

1 INTRODUCTION

- **2** Audio Fingerprinting
 - Introduction
 - Hashing
 - Searching and Scoring
 - Results

4 Conclusion

<□▶ < @▶ < ≧▶ < ≧▶ ≧ の Q @ 5/53

Audio Fingerprinting

Video Fingerprinting

Conclusion

Introduction

<□ > < @ > < E > < E > E の < ⊙ 6/53

Audio Fingerprinting

Video Fingerprinting

Conclusion

<□▶ < @▶ < ≧▶ < ≧▶ ≧ りへで 7/53

PROCESS

Audio Fingerprinting

Video Fingerprinting

Conclusion

<ロ > < 母 > < 臣 > < 臣 > 臣 の < つ 9/53

Audio Fingerprinting

Video Fingerprinting

Conclusion

10/53

GOALS

• The length of the recorded sample should not be more than 15 seconds long

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Audio Fingerprinting

Video Fingerprinting

Conclusion

GOALS

- The length of the recorded sample should not be more than 15 seconds long
- The sample can come from any portion of the original audio track

Audio Fingerprinting

Video Fingerprinting

Conclusion

GOALS

- The length of the recorded sample should not be more than 15 seconds long
- The sample can come from any portion of the original audio track
- Robust

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Audio Fingerprinting

Video Fingerprinting

Conclusion

Hashing

<□ > < □ > < □ > < ⊇ > < ⊇ > 三 の Q C 11/53

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 12/53

Conclusion

TRANSFORMATIONS TO THE FREQUENCY DOMAIN FOURIER TRANSFORM

Fourier transform: maps the signal $x(t) : \mathbb{R} \to \mathbb{C}$ into

$$X(f) = \int_{\infty}^{\infty} x(t) e^{-j2\pi f t} dt$$

which decomposes the function into its frequencies.

Conclusion

TRANSFORMATIONS TO THE FREQUENCY DOMAIN FOURIER TRANSFORM

Fourier transform: maps the signal $x(t) : \mathbb{R} \to \mathbb{C}$ into

$$X(f) = \int_{\infty}^{\infty} x(t) e^{-j2\pi f t} dt$$

which decomposes the function into its frequencies.

Audio Fingerprinting

Video Fingerprinting

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 13/53

Conclusion

SHORT-TIME FOURIER TRANSFORM

STFT is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time.

$$X(t) \xrightarrow{\mathsf{STFT}} X(au, f) = \int_{-\infty}^{\infty} X(t) w(t- au) e^{-j2\pi f t} dt$$

Audio Fingerprinting

Video Fingerprinting

Conclusion

SHORT-TIME FOURIER TRANSFORM

STFT is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time.

$$X(t) \xrightarrow{\mathsf{STFT}} X(au, f) = \int_{-\infty}^{\infty} X(t) w(t- au) e^{-j2\pi f t} dt$$

Audio Fingerprinting

Video Fingerprinting

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへで

Conclusion

14/53

CONSTELLATION AND HASHING

Audio Fingerprinting

Video Fingerprinting

Conclusion

CONSTELLATION AND HASHING

Audio Fingerprinting

Video Fingerprinting

Conclusion

CONSTELLATION AND HASHING

<ロト < 母ト < 目ト < 目ト 目 の へ で 14/53

Audio Fingerprinting

Video Fingerprinting

Conclusion

CONSTELLATION AND HASHING

□ ▶ 《□ ▶ 《 □ ▶ 《 □ ▶ ④ □ ● ○ ○ ○ 14/53

Audio Fingerprinting

Video Fingerprinting

< □ > < 酉 > < 壹 > < Ξ > Ξ · ⑦ Q @ 15/53

Conclusion

HASHING

Each anchor point is sequentially paired with points within its target zone.

HASHING

Audio Fingerprinting

Video Fingerprinting

Conclusion

Each anchor point is sequentially paired with points within its target zone.

 $(f_1, f_2, \Delta t) \rightarrow \mathsf{hash}$

30 bits hash:

 $10 \ {\rm BITS}$ frequency anchor

 $10 \ \rm BITS$ frequency target

 $10 \ {\rm BITS} \ time \ difference$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 15/53

HASHING

Audio Fingerprinting

Video Fingerprinting

Conclusion

Each anchor point is sequentially paired with points within its target zone.

 $(f_1, f_2, \Delta t) \rightarrow \mathsf{hash}$

30 bits hash:

 $10 \ {\rm BITS}$ frequency anchor

 $10 \ \rm BITS$ frequency target

 $10 \ {\rm BITS} \ time \ difference$

Each hash is associated with the time offset:

hash:offset = $(f_1, f_2, \Delta t) : t_1$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Audio Fingerprinting

Video Fingerprinting

Conclusion

Searching and Scoring

Audio Fingerprinting

Video Fingerprinting

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊂ 17/53

Conclusion

SEARCHING AND SCORING

We take all matching hashes of a given song and we plot their time offset

Audio Fingerprinting

Video Fingerprinting

<ロト < 団ト < 臣ト < 臣ト 王 のQで 17/53

Conclusion

SEARCHING AND SCORING

We take all matching hashes of a given song and we plot their time offset

DB song	Query song
h:t	h: $ au$

Audio Fingerprinting

Video Fingerprinting

Conclusion

SEARCHING AND SCORING

We take all matching hashes of a given song and we plot their time offset

 $\begin{array}{c|c} \textbf{DB song} & \textbf{Query song} \\ \hline \textbf{h}:t & \textbf{h}:\tau \end{array}$

< □ > < @ > < \ > < \ > > \ \ = > \ ○ \ ♡ \ \ ♡ \ 17/53

Audio Fingerprinting

Video Fingerprinting

Conclusion

SEARCHING AND SCORING

We take all matching hashes of a given song and we plot their time offset

 $\begin{array}{c|c} \textbf{DB song} & \textbf{Query song} \\ \hline \textbf{h}:t & \textbf{h}:\tau \end{array}$

■ つへで 17/53

Audio Fingerprinting

Video Fingerprinting

Conclusion

Scoring

• Matching features: $t_k = \tau_k + \text{constant}$

<ロト < 母ト < 臣ト < 臣ト 三 のへで 18/53

Audio Fingerprinting

Video Fingerprinting

Conclusion

Scoring

- Matching features: $t_k = \tau_k + \text{constant}$
- For each (t_k, τ_k) in the scatter-plot, we calculate:

$$\Delta_k = t_k - \tau_k$$

<ロト < 母ト < 臣ト < 臣ト 三 のへで 18/53

Audio Fingerprinting

Video Fingerprinting

Conclusion

Scoring

- Matching features: $t_k = \tau_k + \text{constant}$
- For each (t_k, τ_k) in the scatter-plot, we calculate:

$$\Delta_k = t_k - \tau_k$$

• Then we plot a histogram of these Δ_k

<ロト < 母ト < 臣ト < 臣ト 王 のへで 18/53
Audio Fingerprinting

Video Fingerprinting

Conclusion

SCORING TRACK THAT DOES NOT MATCH THE SAMPLE

FIGURE : No diagonal in the scatter-plot.

Audio Fingerprinting

Video Fingerprinting

Conclusion

SCORING TRACK THAT MATCHES THE SAMPLE

FIGURE : Diagonal in the scatter-plot: cluster in the histogram.

Audio Fingerprinting

Video Fingerprinting

Conclusion

Results

RESULTS

Audio Fingerprinting

Video Fingerprinting

Conclusion

• The algorithm performs well with significant levels of noise

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ♡ < ♡ 22/53

RESULTS

Audio Fingerprinting

Video Fingerprinting

Conclusion

• The algorithm performs well with significant levels of noise

• For a database of 20 about thousand tracks the search time is in the order of 5 – 500 milliseconds.

Audio Fingerprinting

Video Fingerprinting

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ℃ 23/53

Conclusion

TABLE OF CONTENTS

1 INTRODUCTION

2 Audio Fingerprinting

3 VIDEO FINGERPRINTING

- Introduction
- Preprocessing
- Discrete cosine transform
- 3D-DCT
- Fingerprinting using TIRIs
- Searching
- Results

Audio Fingerprinting

Video Fingerprinting

Conclusion

Introduction

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Audio Fingerprinting

Video Fingerprinting

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ * ○ Q ○ 25/53

Conclusion

INTRODUCTION

COPY DETECTION SYSTEM

Audio Fingerprinting

INTRODUCTION

Video Fingerprinting

Conclusion

COPY DETECTION SYSTEM

- A fingerprint should be
 - Robust to content-preserving distortions

Audio Fingerprinting

INTRODUCTION

Video Fingerprinting

Conclusion

COPY DETECTION SYSTEM

- A fingerprint should be
 - Robust to content-preserving distortions
 - Discriminant

Audio Fingerprinting

INTRODUCTION

Video Fingerprinting

Conclusion

COPY DETECTION SYSTEM

- A fingerprint should be
 - Robust to content-preserving distortions
 - Discriminant
 - Easy to compute

Audio Fingerprinting

INTRODUCTION

COPY DETECTION SYSTEM

The purpose of this system is to detect copyrights violations.

- A fingerprint should be
 - Robust to content-preserving distortions
 - Discriminant
 - Easy to compute
 - Compact

Conclusion

Audio Fingerprinting

Video Fingerprinting

Conclusion

IMAGE AND VIDEO REPRESENTATIONS

RBG

Audio Fingerprinting

Video Fingerprinting

Conclusion

IMAGE AND VIDEO REPRESENTATIONS

RBG

• Colors represented as a combination of red, green and blue (3D-space)

Audio Fingerprinting

Video Fingerprinting

Conclusion

IMAGE AND VIDEO REPRESENTATIONS

RBG

- Colors represented as a combination of red, green and blue (3D-space)
- Each component is an integer value in [0, 255]

・ロト ・ 日 ・ ・ 三 ・ ・ 三 ・ つ へ (* 26/53)

Audio Fingerprinting

Video Fingerprinting

Conclusion

26/53

IMAGE AND VIDEO REPRESENTATIONS

RBG

- Colors represented as a combination of red, green and blue (3D-space)
- Each component is an integer value in [0, 255]
- YUV

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで、

Audio Fingerprinting

Video Fingerprinting

Conclusion

IMAGE AND VIDEO REPRESENTATIONS

RBG

- Colors represented as a combination of red, green and blue (3D-space)
- Each component is an integer value in [0, 255]
- YUV
 - Y is the luminance component, U and V are the chrominance components.

・ロト ・ 日 ・ ・ 三 ・ ・ 三 ・ つ へ (* 26/53)

Audio Fingerprinting

Video Fingerprinting

Conclusion

Preprocessing

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Audio Fingerprinting

Video Fingerprinting

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ * ○ Q ○ 28/53

Conclusion

Preprocessing

Audio Fingerprinting

Video Fingerprinting

Conclusion

Discrete cosine transform

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ = ⑦ < ♡ 29/53

Audio Fingerprinting

Video Fingerprinting

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ ○ ○ 30/53

Conclusion

DISCRETE COSINE TRANSFORM

• The DCT is similar to the discrete Fourier transform: it transforms a signal or image from the spatial domain to the frequency domain.

Audio Fingerprinting

Video Fingerprinting

Conclusion

DISCRETE COSINE TRANSFORM

- The DCT is similar to the discrete Fourier transform: it transforms a signal or image from the spatial domain to the frequency domain.
- It is a widely used tool in image and video processing and compression!

DISCRETE COSINE TRANSFORM

- The DCT is similar to the discrete Fourier transform: it transforms a signal or image from the spatial domain to the frequency domain.
- It is a widely used tool in image and video processing and compression!
- It is possible to extract some relevant information from the frequency representation

Audio Fingerprinting

Video Fingerprinting

Conclusion

DISCRETE COSINE TRANSFORM FORMULA

The two-dimensional DCT of an M-by-N matrix A is defined as follow:

$$B_{pq} = \alpha_p \alpha_q \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} A_{mn} \cos \frac{\pi (2m+1)p}{2M} \cos \frac{\pi (2n+1)q}{2N}$$

$$\alpha_p = \begin{cases} \frac{1}{\sqrt{M}}, & p = 0\\ \sqrt{\frac{2}{M}}, & 1 \le p \le M - 1 \end{cases} \quad \alpha_q = \begin{cases} \frac{1}{\sqrt{N}}, & q = 0\\ \sqrt{\frac{2}{N}}, & 1 \le q \le M - 1 \end{cases}$$

where $0 \le p \le M-1$ and $0 \le q \le N-1$ are the matrix indexes.

Audio Fingerprinting

Video Fingerprinting

Conclusion

DISCRETE COSINE TRANSFORM Example

Audio Fingerprinting

Video Fingerprinting

Conclusion

3D-DCT

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 34/53

Audio Fingerprinting

Video Fingerprinting

< □ > < 酉 > < 壹 > < Ξ > Ξ の < ⊙ 35/53

Conclusion

3D DISCRETE COSINE TRANSFORM

3D-DCT is a DCT applied to a 3-dimensional matrix.

Audio Fingerprinting

Video Fingerprinting

Conclusion

3D DISCRETE COSINE TRANSFORM

3D-DCT is a DCT applied to a 3-dimensional matrix. Time domain Frequency domain

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ♡ Q @ 35/53

Audio Fingerprinting

Video Fingerprinting

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ▲ ■ ▶ ● ■ ⑦ � ○ 36/53

Conclusion

FINGERPRINTING USING 3D-DCT

Audio Fingerprinting

Video Fingerprinting

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ * ○ へ ○ 36/53

Conclusion

FINGERPRINTING USING 3D-DCT

Audio Fingerprinting

Video Fingerprinting

Conclusion

FINGERPRINTING USING 3D-DCT

Binary fingerprints are derived by thresholding the low-frequency coefficients of the transform; the threshold is the median value of the selected coefficients.

Audio Fingerprinting

Video Fingerprinting

Conclusion

Fingerprinting using TIRIs

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Audio Fingerprinting

Video Fingerprinting

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ ○ ○ 38/53

Conclusion

TIRI Temporally Informative Representative Image

A TIRI contains spatial and temporal information of a short segment of a video sequence.

Audio Fingerprinting

Video Fingerprinting

Conclusion

TIRI Temporally Informative Representative Image

A TIRI contains spatial and temporal information of a short segment of a video sequence.

$$I'_{m,n} = \sum_{k=1}^{J} w_k I_{m,n,k}$$

where $I_{m,n,k}$ is the luminance value of the (m,n)th pixel in a set of J frames and w_k is a weighting factor. Onter Content Introduction

Audio Fingerprinting

Video Fingerprinting

Conclusion

TIRI Weighting factor

Experiments were made with different *w*: constant, linear, exponential.

FIGURE : (d) $w_k = 1$ (costant), (e) $w_k = k$ (linear), (f) $w_k = 1.2^k$ (exponential)

Audio Fingerprinting

Video Fingerprinting Conclusion

TIRI-DCT

Audio Fingerprinting

Video Fingerprinting

Conclusion

Searching

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の へ つ 41/53

Audio Fingerprinting

Video Fingerprinting

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Conclusion

SEARCHING REQUIREMENTS

After the fingerprint is extracted, the database is searched for the closest fingerprint.

Audio Fingerprinting

Video Fingerprinting

・ロト ・ 日 ・ ・ 王 ・ 王 ・ ① へ (* 42/53)

Conclusion

SEARCHING REQUIREMENTS

After the fingerprint is extracted, the database is searched for the closest fingerprint.

NEAREST NEIGHBOR PROBLEM

Fingerprints of two different copies of the same video are similar but not necessarily identical. We then search for the most similar fingerprint in the binary space.

Audio Fingerprinting

Video Fingerprinting

<ロト < 団ト < 臣ト < 臣ト 臣 のへで 42/53

Conclusion

SEARCHING REQUIREMENTS

After the fingerprint is extracted, the database is searched for the closest fingerprint.

NEAREST NEIGHBOR PROBLEM

Fingerprints of two different copies of the same video are similar but not necessarily identical. We then search for the most similar fingerprint in the binary space.

Since the database is very large, the algorithm must be fast. A fast *approximate* algorithm is preferred over an *exact* slow one.

Audio Fingerprinting

Video Fingerprinting

Conclusion

SEARCHING REQUIREMENTS

After the fingerprint is extracted, the database is searched for the closest fingerprint.

NEAREST NEIGHBOR PROBLEM

Fingerprints of two different copies of the same video are similar but not necessarily identical. We then search for the most similar fingerprint in the binary space.

Since the database is very large, the algorithm must be fast. A fast *approximate* algorithm is preferred over an *exact* slow one.

HAMMING DISTANCE

The process used to create binary fingerprints allow us to use the Hamming distance as a metric of similarity.

Audio Fingerprinting

Video Fingerprinting

・ロト ・ 日 ・ ・ 王 ・ 王 ・ シーマー・ 43/53

Conclusion

INVERTED-FILE-BASED SIMILARITY SEARCH

Audio Fingerprinting

Video Fingerprinting

Conclusion

INVERTED-FILE-BASED SIMILARITY SEARCH

・ロト ・ 日 ・ ・ 王 ・ 王 ・ シーマー・ 43/53

Audio Fingerprinting

Video Fingerprinting

Conclusion

INVERTED-FILE-BASED SIMILARITY SEARCH

To find a query fingerprint in a database:

• The fingerprint is divided into *n* words (of *m* bits)

Audio Fingerprinting

Video Fingerprinting

Conclusion

INVERTED-FILE-BASED SIMILARITY SEARCH

To find a query fingerprint in a database:

- The fingerprint is divided into *n* words (of *m* bits)
- The query is compared with fingerprints that starts with the same word.

Audio Fingerprinting

Video Fingerprinting

・ロト ・ 日 ・ ・ 王 ・ 王 ・ ① へ (* 44/53)

Conclusion

INVERTED-FILE-BASED SIMILARITY SEARCH

To find a query fingerprint in a database:

- The fingerprint is divided into *n* words (of *m* bits)
- The query is compared with fingerprints that starts with the same word.
- If the Hamming distance is below a certain threshold, the match is found.

Audio Fingerprinting

Video Fingerprinting

4 ロ ト 4 母 ト 4 臣 ト 4 臣 ト 臣 の 4 4 / 53

Conclusion

INVERTED-FILE-BASED SIMILARITY SEARCH

To find a query fingerprint in a database:

- The fingerprint is divided into *n* words (of *m* bits)
- The query is compared with fingerprints that starts with the same word.
- If the Hamming distance is below a certain threshold, the match is found.
- Otherwise the procedure is repeated with the second word and so on.

Audio Fingerprinting

Video Fingerprinting

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ♡ Q ♡ 45/53

Conclusion

CLUSTER-BASED SIMILARITY SEARCH

• The database is clustered into K non-overlapping groups; each cluster has a centroid called cluster head.

Audio Fingerprinting

Video Fingerprinting

<ロト < 回 ト < 三 ト < 三 ト 三 の へ C 45/53

Conclusion

CLUSTER-BASED SIMILARITY SEARCH

- The database is clustered into K non-overlapping groups; each cluster has a centroid called cluster head.
- The cluster head closest to the query fingerprint is found

$$\underbrace{\underbrace{0100001}_{0}}_{\text{dist}_{0}=2} \underbrace{\underbrace{0010110}_{0}}_{0} \underbrace{\underbrace{1010111}_{1}}_{0} \underbrace{\underbrace{0000001}_{0}}_{0} \underbrace{\underbrace{111101}_{1}}_{1}$$

$$\underbrace{111101}_{\text{dist}_{0}=2} \underbrace{\underbrace{00101}_{1}}_{1} \underbrace{111101}_{1}$$

$$\underbrace{111101}_{1}$$

Audio Fingerprinting

Video Fingerprinting

Conclusion

CLUSTER-BASED SIMILARITY SEARCH

- The database is clustered into K non-overlapping groups; each cluster has a centroid called cluster head.
- The cluster head closest to the query fingerprint is found

$$\underbrace{\underbrace{0100001}_{0}}_{\text{dist}_{0}=2} \underbrace{\underbrace{0010110}_{0}}_{0} \underbrace{\underbrace{1010111}_{1}}_{1} \underbrace{\underbrace{0000001}_{0}}_{0} \underbrace{\underbrace{111101}_{1}}_{1}$$

• Every fingerprint belonging to this cluster are searched to find a match

Audio Fingerprinting

Video Fingerprinting

Conclusion

CLUSTER-BASED SIMILARITY SEARCH

- The database is clustered into K non-overlapping groups; each cluster has a centroid called cluster head.
- The cluster head closest to the query fingerprint is found

$$\underbrace{\underbrace{0100001}_{0}}_{\text{dist}_{0}=2} \underbrace{\underbrace{0010110}_{0}}_{0} \underbrace{\underbrace{1010111}_{1}}_{0} \underbrace{\underbrace{0000001}_{0}}_{0} \underbrace{\underbrace{111101}_{1}}_{1}$$

$$\underbrace{\underbrace{0000001}_{1}}_{1} \underbrace{\underbrace{111101}_{1}}_{1}$$

$$\underbrace{0000001}_{1} \underbrace{\underbrace{111101}_{1}}_{1}$$

$$\underbrace{111101}_{1}$$

$$\underbrace{0000001}_{1} \underbrace{\underbrace{111101}_{1}}_{1}$$

$$\underbrace{111101}_{1}$$

$$\underbrace{1111101}_{1}$$

$$\underbrace{11111101}_{1}$$

$$\underbrace{111111101}_{1}$$

$$\underbrace{11111101}_{1}$$

$$\underbrace{11111101}_{1}$$

$$\underbrace{11111101}_{1}$$

- Every fingerprint belonging to this cluster are searched to find a match
- If no match is found, then the cluster that is the second closest to the query is examined, then the third and so on

Audio Fingerprinting

Video Fingerprinting

Conclusion

Results

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Audio Fingerprinting

Video Fingerprinting

Conclusion

RESULTS

- A database of 200 videos was created
- Videos were attacked (distorted) to create query videos

Audio Fingerprinting

Video Fingerprinting

Conclusion

RESULTS

- A database of 200 videos was created
- Videos were attacked (distorted) to create query videos

METRICS

 $\operatorname{Recall}\,$ It's the true positive rate. It is a measure of robustness.

$$\mathsf{Recall} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

Audio Fingerprinting

Video Fingerprinting

Conclusion

RESULTS

- A database of 200 videos was created
- Videos were attacked (distorted) to create query videos

METRICS

 $\operatorname{Recall}\,$ It's the true positive rate. It is a measure of robustness.

$$\mathsf{Recall} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

 $\ensuremath{\operatorname{Precision}}$ Precision Percentage of correct hits within all detected copies.

$$\mathsf{Precision} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$$

Audio Fingerprinting

Video Fingerprinting

Conclusion

RESULTS

- A database of 200 videos was created
- Videos were attacked (distorted) to create query videos

METRICS

 $\operatorname{Recall}\,$ It's the true positive rate. It is a measure of robustness.

$$\mathsf{Recall} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

 $\ensuremath{\operatorname{Precision}}$ Precision Percentage of correct hits within all detected copies.

$$\mathsf{Precision} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$$

 $\operatorname{F-SCORE}\,$ It is the harmonic mean of precision and recall:

$$F = 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Audio Fingerprinting

Video Fingerprinting

<ロト < 四ト < 巨ト < 三ト < 三ト 三 の へ C 48/53

Conclusion

RESULTS

Attack	F-score		
	3D-DCT	TIRI-DCT	
Noise	1.00	0.99	
Brightness	1.00	0.99	
Contrast	1.00	0.99	
Rotation	1.00	1.00	
Time shift	0.91	0.98	
Spatial shift	1.00	0.98	
Frame loss	0.98	0.99	
Average	0.99	0.99	

RESULTS

Audio Fingerprinting

Video Fingerprinting

Conclusion

Attack F-score 3D-DCT TIRI-DCT Noise 1.00 0.99 Brightness 1.00 0.99 Contrast 1.00 0.99 Rotation 1.00 1.00 Time shift 0.91 0.98 Spatial shift 1.00 0.98 Frame loss 0.98 0.99 0.99 0.99 Average

Speed

• TIRI-DCT is more than 3 times faster than 3D-DCT

<ロト < 回 ト < 巨 ト < 巨 ト 三 の へ で 48/53

RESULTS

Audio Fingerprinting

Video Fingerprinting

Conclusion

Attack	F-score	
	3D-DCT	TIRI-DCT
Noise	1.00	0.99
Brightness	1.00	0.99
Contrast	1.00	0.99
Rotation	1.00	1.00
Time shift	0.91	0.98
Spatial shift	1.00	0.98
Frame loss	0.98	0.99
Average	0.99	0.99

Speed

- TIRI-DCT is more than 3 times faster than 3D-DCT
- Approximate search algorithms are much faster than the exhaustive search when the error rates are low.

<ロト < 回 ト < 三 ト < 三 ト 三 の へ で 48/53

RESULTS

Audio Fingerprinting

Video Fingerprinting

Conclusion

Attack	F-score	
	3D-DCT	TIRI-DCT
Noise	1.00	0.99
Brightness	1.00	0.99
Contrast	1.00	0.99
Rotation	1.00	1.00
Time shift	0.91	0.98
Spatial shift	1.00	0.98
Frame loss	0.98	0.99
Average	0.99	0.99

Speed

- TIRI-DCT is more than 3 times faster than 3D-DCT
- Approximate search algorithms are much faster than the exhaustive search when the error rates are low. Cluster-based approach is faster.

<ロト < 回 ト < 三 ト < 三 ト 三 の へ で 48/53

Audio Fingerprinting

Video Fingerprinting

・ロト ・ 日 ・ ・ 王 ・ 王 ・ ① へ (* 49/53)

Conclusion

TABLE OF CONTENTS

1 INTRODUCTION

- **2** Audio Fingerprinting
- **3** VIDEO FINGERPRINTING
- **4** CONCLUSION

Audio Fingerprinting

Video Fingerprinting

Conclusion ●○○○

Shazam

• The algorithm is noise resistant and efficient. It can identify a short segment of music out of a database of over a million tracks. However the algorithm is not meant to be resistant to general attacks (e.g time compression, pitch alterations, ...).

Audio Fingerprinting

Video Fingerprinting

Conclusion ●○○○

Shazam

- The algorithm is noise resistant and efficient. It can identify a short segment of music out of a database of over a million tracks. However the algorithm is not meant to be resistant to general attacks (e.g time compression, pitch alterations, ...).
- Shazam was founded in 1999 and launched its first identification service in 2002

Audio Fingerprinting

Video Fingerprinting

Conclusion ●○○○

Shazam

- The algorithm is noise resistant and efficient. It can identify a short segment of music out of a database of over a million tracks. However the algorithm is not meant to be resistant to general attacks (e.g time compression, pitch alterations, ...).
- Shazam was founded in 1999 and launched its first identification service in 2002
- Shazam has now 400 million users in 200 countries and was used to identify 15 billion songs

Audio Fingerprinting

Video Fingerprinting

Conclusion ●○○○

Shazam

- The algorithm is noise resistant and efficient. It can identify a short segment of music out of a database of over a million tracks. However the algorithm is not meant to be resistant to general attacks (e.g time compression, pitch alterations, ...).
- Shazam was founded in 1999 and launched its first identification service in 2002
- Shazam has now 400 million users in 200 countries and was used to identify 15 billion songs
- The value of the company is now half a billion dollars

Audio Fingerprinting

Video Fingerprinting

<ロト 4回ト 4 三ト 4 三ト 三 のへで 51/53

Conclusion

VIDEO FINGERPRINTING

• The proposed system is robust and it is able to find a match in a database of tens of millions of fingerprints in a few seconds

Audio Fingerprinting

Video Fingerprinting

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ C 51/53

Conclusion

VIDEO FINGERPRINTING

- The proposed system is robust and it is able to find a match in a database of tens of millions of fingerprints in a few seconds
- It yields a high average true positive rate of 97.6% and a low average false positive rate of 1%.

Audio Fingerprinting

Video Fingerprinting

Conclusion

Youtube testing

Results of Scott Smitelli tests:

Modification Performed	Result
Song reversed	Pass
Pitch was lowered 6%	Pass
Pitch was lowered 5%	Fail
Pitch was raised 5%	Fail
Pitch was raised 6%	Pass
Time was expanded 6%	Pass
Time was expanded 5%	Fail
Time was compressed 5%	Fail
Time was compressed 6%	Pass
44% noise, 56% song	Fail
45% noise, 55% song	Pass

Modification Performed	Result
Volume was reduced 48 dB	Fail
Volume was reduced 18 dB	Fail
Volume was reduced 6 dB	Fail
Volume was increased 6 dB	Fail
Volume was increased 18 dB	Fail
Volume was increased 48 dB	Fail
Slow down 4%	Pass
Slow down 3%	Fail
Speed up 3%	Fail
Speed up 4%	Fail
Speed up 5%	Pass

< □ > < 酉 > < 壹 > < Ξ > Ξ の Q C 52/53

Audio Fingerprinting

Video Fingerprinting

Conclusion ○○○●

Questions?

< □ ▶ < 酉 ▶ < 壹 ▶ < 壹 ▶ Ξ ∽ ♀ ⊙ ♀ ⊙ 53/53