
Stefan Schmid @ T-Labs, 2011

Distributed Computing over
Communication Networks:

Tree Algorithms

Stefan Schmid @ T-Labs, 2011

Broadcast

Why trees?

E.g., efficient broadcast, aggregation,
routing, ...

Important trees?

E.g., breadth-first trees, minimal
spanning trees, ...

Stefan Schmid @ T-Labs, 2011

Broadcast

Lower bound for
time and messages?

Stefan Schmid @ T-Labs, 2011

Recall: Local Algorithm

... compute.

... receive...

Send...

Stefan Schmid @ T-Labs, 2011

Broadcast

Broadcast
Message from one source to all other nodes.

Relationship
between R and D?

Distance, Radius, Diameter
Distance between two nodes is # hops.
Radius of a node is max distance to any other node.
Radius of graph is minimum radius of any node.
Diameter of graph is max distance between any two nodes.

Stefan Schmid @ T-Labs, 2011

Examples....

Lemma (R, D)
R ·

D ·

2R

Where R=D?
Where 2R=D?Complete graph:

Stefan Schmid @ T-Labs, 2011

Kevin Bacon, Paul Erdös,

People like to find nodes of small radius in a graph! E.g., movie
collaboration (link = act in same movie) or science (link = have
paper together)!

Stefan Schmid @ T-Labs, 2011

Lower Bound for Broadcast?

Each node must receive message: so at least n-1.

Message complexity?

The radius of the source: each node needs to receive message.

Time complexity?

How to achieve broadcast with n-1
messages and radius time?

Pre-computed breadth-first spanning tree...

Stefan Schmid @ T-Labs, 2011

Broadcast in Clean Networks?

Clean Graph
Nodes do not know topology.

Lower bound for clean networks?
Number of edges: if not every edge is tried, one
might miss an entire subgraph!

How to do broadcast in clean network?

1. Source sends message to all neighbors.
2. Each other node u when receiving the message for the first
time from node v (called u‘s parent), sends it to all
(other) neighbors.
3. Later receptions are discarded.

Note that parent relationship defines a tree!
In synchronous system, the tree is a breadth-first search spanning tree!

Flooding

Stefan Schmid @ T-Labs, 2011

Convergecast

Convergecast
Opposite of broadcast: all nodes send
message to a given node!

Purpose?

How?

E.g., for aggregation!
E.g., find maxID!
E.g., compute average!
E.g., aggregate ACKs!

Stefan Schmid @ T-Labs, 2011

Aggregation (last time, promised ☺)

Stefan Schmid @ T-Labs, 2011

Echo Algorithm

0. Initiated by the leaves (e.g., of tree computed by
flooding algo)

1. Leave sends message to its parent
2. If inner node has received a message from each

child, it forwards message to parent

Echo Algorithm

Application: convergecast to determine
termination. How?

Sub-tree completed?

Complexities?
Echo on tree, but complexity of flooding to
build tree...

Stefan Schmid @ T-Labs, 2011

BFS Tree Construction

How to compute a breadth-first tree?

Flooding gives parent-relationship, but...
... only if synchronous.

How to do it in asynchronous distributed system?
Dijkstra or Bellman-Ford style....

Do you remember the ideas??
Bellman-Ford: BGP in the Internet!

Dijkstra: grow on the „border“
Bellman-Ford: distances (distance vector)...

Stefan Schmid @ T-Labs, 2011

Asynchronous BFS Tree

Divide execution into phases. In phase p, nodes with distance
p to the root are detected. Let Tp be the tree of phase p. T1

is the root plus all direct neighbors.
Repeat (until no new nodes discovered):
1. Root starts phase p by broadcasting „start p“ within Tp

2. A leave u of Tp (= node discovered only in last phase) sends „join p+1“
to all quiet neighbors v (u has not talked to v yet)

3. Node v hearing „join“ for first time sends back „ACK“: it becomes leave
of tree Tp+1 ; otherwise v replied „NACK“ (needed since async!)

4. The leaves of Tp collect all answers and start Echo Algorithm to the root

5. Root initates next phase

Dijkstra Style

Dijkstra: find next closest node („on border“) to the root

Stefan Schmid @ T-Labs, 2011

Asynchronous BFS Tree: Idea

Phase 1 Phase 2

...

Wait until all
next hops explored...

Wait until all
next hops explored...

Stefan Schmid @ T-Labs, 2011

Asynchronous BFS Tree

root

join

join

P

Stefan Schmid @ T-Labs, 2011

Asynchronous BFS Tree

root

NACK

ACK

Stefan Schmid @ T-Labs, 2011

Asynchronous BFS Tree

root

Stefan Schmid @ T-Labs, 2011

Analysis

Time Complexity?

O(D2) where D is diameter of graph...
... as convergecast costs O(D), and we have D phases.

Message Complexity?

O(m+nD) where m is number of edges, n is number of
nodes.
Because: Convergecast has cost O(n), one per link in
tree, so over all phases O(nD). On each edge, there are
at most two join messages (both directions), and there is
at most an ACK/NACK answer, so +m...

Alternative algo?

Stefan Schmid @ T-Labs, 2011

Asynchronous BFS Tree

Each node u stores du , the distance from u to the root.
Initially, droot =0 and all other distances are ∞. Root
starts algo by sending „1“ to all neighbors.
1. If a node u receives message „y“ with y<du

du := y
send „y+1“ to all other neighbors

Bellman-Ford Style

Bellman-Ford: compute shortest distances by flooding an all paths;
best predecessor = parent in tree

Stefan Schmid @ T-Labs, 2011

Asynchronous BFS Tree

root

„2“

„3“

∞

Stefan Schmid @ T-Labs, 2011

Analysis

Time Complexity?
O(D) where D is diameter of graph.
By induction: By time d, node at distance d got „d“.
Clearly true for d=0 and d=1.
A node at distance d has neighbor at distance d-1 that got „d-1“ on time by
induction hypothesis. It will send „d“ in next time slot...

Message Complexity?
O(mn) where m is number of edges, n is number of
nodes.
Because: A node can reduce its distance at most n-1 times
(recall: asynchronous!). Each of these times it sends a message
to all its neighbors.

Stefan Schmid @ T-Labs, 2011

Discussion

Dijkstra has better message complexity, Bellman-
Ford better time complexity.

Can we do better?

Yes, but not in this course... ☺

Which algorithm is better?

Remark: Asynchronous algorithms can be made
sychronous... (e.g., by central controller or better:
local synchronizers)

Stefan Schmid @ T-Labs, 2011

MST Construction

Another spanning tree? Why?

For weighted graphs: tree of minimal costs...
useful building block (approximation algorithms etc.)!

MST

Tree with edges of minimal total weight.

Assume all links have different weights. So...
MST is unique.

How to compute in a
distributed manner
(synchronously...)?!
(How to do it classically?)
Kruskal, Prim, ...

Stefan Schmid @ T-Labs, 2011

Idea

Blue Edge
Let T be a spanning tree and T‘ a subgraph of T.
Edge e=(u,v) is outgoing edge if u ∈ T‘ but v is not.
The outgoing edge of minimal weight is called
blue edge.

root
3

not part of
spanning tree T

2

blue edge of T‘T‘

This is like
Dijkstra....

Stefan Schmid @ T-Labs, 2011

Idea

Lemma
If T is the MST and T‘ a subgraph, then the blue
edge of T‘ is also part of T.

Proof idea?

By contradiction! Suppose there is an other edge
e‘ connecting T‘ to the rest of T. If we add the
blue edge e and remove e‘ from the resulting
cycle, we still have a spanning tree, but with
lower cost...

T‘

T: e

e‘
So what?!

Stefan Schmid @ T-Labs, 2011

Distributed Kruskal

Note: every node must be incident to a blue edge!
We do not have to grow just one component, but can do many
fragments in parallel!

This is „distributed Kruskal“ so to speak. ☺

Initially, each node is root of ist own fragment.
Repeat (until all nodes in same fragment)

1. nodes learn ID of neighbors
2. root of fragment finds blue edge (u,v) by convergecast
3. root sends message to u
4. if v also sent a merge request over (u,v), u or v becomes new
root depending on smaller ID (make trees directed)
5. new root informs fragment about new root (convergecast on
„MST“ of fragment)

Gallager-Humblet-Spira

Stefan Schmid @ T-Labs, 2011

Distributed Kruskal: Idea

blue for T1
T1

T2

T3

blue for T2 and T3

1

3

6
5

8

The blue edge of each fragment can
be taken for sure: cycles not possible!
(Blue edge lemma!)

So we can do it in parallel!

Stefan Schmid @ T-Labs, 2011

Distributed Kruskal: Idea

Phase 1

Phase 2

Phase 3

Minimal fragment size
in round i?

~ 2i...

Stefan Schmid @ T-Labs, 2011

Distributed Kruskal

blue edge of T‘ T‘

7
10

3

u

v

root

1
blue edge
of T‘‘
and T‘‘‘

T‘‘

Who becomes overall leader of T and T‘?
Make trees directed...

T‘‘‘

Stefan Schmid @ T-Labs, 2011

Distributed Kruskal

blue edge of T‘ T‘

7
10

3

u

v

root

1

T‘‘

All trees rooted! How to merge on blue edge (u,v)?
1. Invert path from root to u (u is temporary root)
2. If u and v sent message over blue edge: point blue edge to

smaller ID; otherwise v is parent of u..

root

root
T‘‘‘

blue edge
of T‘‘
and T‘‘‘

Stefan Schmid @ T-Labs, 2011

Distributed Kruskal

blue edge of T‘:
direct to T‘‘

T‘

7
10

3

u

v

1

T‘‘

New directed tree with new root! ☺
T‘‘‘‘ connects somewhere else...

root

blue edge
of T‘‘
and T‘‘‘:
tie
break

Stefan Schmid @ T-Labs, 2011

Distributed Kruskal

blue edge of T‘:
direct to T‘‘

T‘

7
10

3

u

v

1

T‘‘

Merged fragments!

root

blue edge
of T‘‘
and T‘‘‘:
tie
break

...

Stefan Schmid @ T-Labs, 2011

Analysis

Time Complexity?

Each phase mainly consists of two convergecasts, so O(D) time and O(n)
messages per phase?

Message Complexity?

Stefan Schmid @ T-Labs, 2011

Analysis

Careful: diameter of MST may be larger than diameter of graph!

O(n) time for convergecast, and not O(1)...

Stefan Schmid @ T-Labs, 2011

Analysis

Time Complexity?
O(n log n) where n is graph size.

Each phase mainly consists of two convergecasts, so O(n) time and O(n)
messages. In order to learn fragment IDs of neighbors, O(m) messages
are needed (e.g., first phase!).
How many phases are there?

Message Complexity?

O(m log n) where m is number of edges.

The size of the smallest fragment at least doubles in each phase, so it‘s
logarithmic.

Yes, we can do better. ☺
 (Is it a good idea to distribute Prim‘s

algorithm?)

Stefan Schmid @ T-Labs, 2011

End of lecture

Literature for further reading:

- Peleg‘s book (as always ☺

)

	Distributed Computing over�Communication Networks:
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

