DDA 2010, lecture 3: Ramsey's theorem

- A generalisation of the pigeonhole principle
- Frank P. Ramsey (1930):
"On a problem of formal logic"
- "... in the course of this investigation it is necessary to use certain theorems on combinations which have an independent interest..."

DDA 2010, lecture 3a:
Introduction to Ramsey's theorem

- Notation of Ramsey numbers from Radziszowski (2009)

Basic definitions

- Assign a colour from $\{1,2, \ldots, c\}$ to each k-subset of $\{1,2, \ldots, N\}$

$$
\begin{array}{cc}
\mathrm{N}=4, \mathrm{k}=3, \mathrm{c}=2 \\
\hline\{1,2,3\} & \{1,2,4\} \\
\{1,3,4\} & \{2,3,4\}
\end{array}
$$

$\mathrm{N}=13, \mathrm{k}=1, \mathrm{c}=3$			
$\{1\}$	$\{2\}$	$\{3\}$	$\{4\}$
$\{5\}$	$\{6\}$	$\{7\}$	$\{8\}$
$\{9\}$	$\{10\}$	$\{11\}$	$\{12\}$
$\{13\}$			

$\mathrm{N}=6, \mathrm{k}=2, \mathrm{c}=2$				
$\{1,2\}$	$\{1,3\}$	$\{1,4\}$	$\{1,5\}$	$\{1,6\}$
	$\{2,3\}$	$\{2,4\}$	$\{2,5\}$	$\{2,6\}$
		$\{3,4\}$	$\{3,5\}$	$\{3,6\}$
			$\{4,5\}$	$\{4,6\}$
				$\{5,6\}$

Basic definitions

- Assign a colour from $\{1,2, \ldots, c\}$ to each k-subset of $\{1,2, \ldots, N\}$

Basic definitions

- $\mathrm{X} \subset\{1,2, \ldots, \mathrm{~N}\}$ is a monochromatic subset if all k-subsets of X have the same colour

Ramsey's theorem

- Assign a colour from $\{1,2, \ldots, c\}$ to each k-subset of $\{1,2, \ldots, N\}$
- $\mathrm{X} \subset\{1,2, \ldots, \mathrm{~N}\}$ is a monochromatic subset if all k-subsets of X have the same colour
- Ramsey's theorem: For all c, k , and n there is a finite N such that any c-colouring of k-subsets of $\{1,2, \ldots, N\}$ contains a monochromatic subset with n elements

Ramsey's theorem

- Assign a colour from $\{1,2, \ldots, c\}$ to each k-subset of $\{1,2, \ldots, N\}$
- $\mathrm{X} \subset\{1,2, \ldots, \mathrm{~N}\}$ is a monochromatic subset if all k-subsets of X have the same colour
- Ramsey's theorem: For all c, k, and n there is a finite N such that any c-colouring of k-subsets of $\{1,2, \ldots, N\}$ contains a monochromatic subset with n elements
- The smallest such N is denoted by $R_{c}(n ; k)$

Ramsey's theorem: k = 1

- $\mathrm{k}=1$: pigeonhole principle
- If we put N items into c slots, then at least one of the slots has to contain at least n items
- Colour of the 1 -subset $\{i\}=$ slot of the element i
- Clearly holds if $\mathrm{N} \geq \mathrm{c}(\mathrm{n}-1)+1$
- Does not necessarily hold if $\mathrm{N} \leq \mathrm{C}(\mathrm{n}-1)$
- $R_{c}(n ; 1)=c(n-1)+1$

Ramsey's theorem: $\mathrm{k}=2, \mathrm{c}=2$

- Complete graphs, red and blue edges
- If the graph is large enough, there will be a monochromatic clique
- For example, $\mathrm{R}_{2}(2 ; 2)=2$,

$$
\mathrm{R}_{2}(3 ; 2)=6, \text { and } \mathrm{R}_{2}(4 ; 2)=18
$$

- A graph with 2 nodes contains a monochromatic edge
- A graph with 6 nodes contains a monochromatic triangle

Ramsey's theorem: $\mathrm{k}=2, \mathrm{c}=2$

- Of course, we can equally well have:
- red/ blue edges
- existing/missing edges

Ramsey's theorem: $\mathrm{k}=2, \mathrm{c}=2$

- Another interpretation: graphs
- $\{u, v\}$ red: edge $\{u, v\}$ present
- \{u,v\} blue: edge $\{u, v\}$ missing
- Large monochromatic subset:
- Large clique (red) or large independent set (blue)
- Any graph with 6 nodes contains a clique with 3 nodes or an independent set with 3 nodes

Ramsey's theorem: $\mathrm{k}=2, \mathrm{c}=2$

- Sufficiently large graphs (N nodes) contain large independents sets (n nodes) or large cliques (n nodes)
- You can avoid one of these, but not both
- However, Ramsey numbers are large: here N is exponential in n

DDA 2010, lecture 3b: Proof of Ramsey's theorem

- Following Nešetřil (1995)
- Notation from Radziszowski (2009)

Definitions

- $X \subset\{1,2, \ldots, N\}$ is a monochromatic subset:
if A and B are k-subsets of X, then A and B have the same colour
- $\mathrm{X} \subset\{1,2, \ldots, \mathrm{~N}\}$ is a good subset: if A and B are k-subsets of X and $\min (A)=\min (B)$, then A and B have the same colour
- An example with $\mathrm{c}=2$ and $\mathrm{k}=2$:
$\{1,2,3,5\}$ is good but not monochromatic in the colouring $\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{4,5\}$

Definitions

- $X \subset\{1,2, \ldots, N\}$ is a monochromatic subset:
if A and B are k-subsets of X, then A and B have the same colour
- $\mathrm{X} \subset\{1,2, \ldots, \mathrm{~N}\}$ is a good subset: if A and B are k-subsets of X and $\min (A)=\min (B)$, then A and B have the same colour
- $R_{c}(n ; k)=$ smallest N s.t. \exists monochromatic n -subset
- $G_{c}(n ; k)=$ smallest N s.t. \exists good n-subset

Proof outline

- $R_{c}(n ; k)=$ smallest N s.t. ョ monochromatic n-subset
- $\mathrm{G}_{\mathrm{c}}(\mathrm{n} ; \mathrm{k})=$ smallest N s.t. \exists good n -subset
- Theorem: $R_{c}(n ; k)$ is finite for all c, n, k
(i) $R_{C}(n ; 1)$ is finite for all n
(ii) If $R_{c}(n ; k-1)$ is finite for all n then $G_{c}(n ; k)$ is finite for all n c is fixed
throughout the proof
(iii) $R_{c}(n ; k) \leq G_{c}(c(n-1)+1 ; k)$ for all n, k

Proof: step (i)

- Lemma: $\mathrm{R}_{\mathrm{c}}(\mathrm{n} ; 1)$ is finite for all n
- Proof:
- Pigeonhole principle
- $R_{c}(n ; 1)=c(n-1)+1$

Proof: step (ii) —outline

- Lemma: if $R_{c}(n ; k-1)$ is finite for all n then $G_{c}(n ; k)$ is finite for all n
- Proof:
- Induction on n
- Basis: $G_{c}(k ; k)$ is finite
- Inductive step: Assume that $M=G_{c}(n-1 ; k)$ is finite
- Then we also have a finite $R_{c}(M ; k-1)$
- Enough to show that $G_{c}(n ; k) \leq 1+R_{c}(M ; k-1)$

Proof: step (ii)

f: $\{1,2,3\}\{1,2,4\}\{1,3,4\}\{2,3,4\}$
$f^{\prime}: \quad\{2,3\} \quad\{2,4\} \quad\{3,4\}$

- $\mathrm{G}_{\mathrm{c}}(\mathrm{n} ; \mathrm{k}) \leq 1+\mathrm{R}_{\mathrm{c}}(\mathrm{M} ; \mathrm{k}-1)$ where $\mathrm{M}=\mathrm{G}_{\mathrm{c}}(\mathrm{n}-1 ; \mathrm{k})$
- Let $N=1+R_{c}(M ; k-1)$, consider any colouring f of k-subsets of $\{1,2, \ldots, N\}$
- Delete element 1 : colouring f^{\prime} of ($k-1$)-subsets of $\{2,3, \ldots, N\}$
- Find an f'-monochromatic M -subset $\mathrm{X} \subset\{2,3, \ldots, \mathrm{~N}\}$
- Find an f-good ($n-1$)-subset $Y \subset X$
- $\{1\} \cup Y$ is an f-good n-subset of $\{1,2, \ldots, N\}$

Proof: step (ii)

In real life, these constants would be much larger...

- A fictional example: $\mathrm{N}=7, \mathrm{M}=5, \mathrm{n}=5, \mathrm{k}=3$
- Original colouring f: $\{1,2,3\},\{1,2,4\},\{1,2,5\}$, $\{1,2,6\},\{1,2,7\}, \ldots,\{1,6,7\},\{2,3,4\}, \ldots,\{5,6,7\}$
- Colouring f': $\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{2,7\}, \ldots,\{6,7\}$
- f^{\prime}-monochromatic M-subset $\{2,3,4,5,7\}$ of $\{2,3, \ldots, N\}$: $\{2,3\},\{2,4\},\{2,5\},\{2,7\}, \ldots,\{5,7\}$
- f-good (n-1)-subset $\{2,4,5,7\}:\{2,4,5\},\{2,4,7\},\{4,5,7\}$
- $\{\mathbf{1}, 2,4,5,7\}$ is f -good: $\{\mathbf{1}, 2,4\},\{\mathbf{1}, 2,5\},\{\mathbf{1}, 2,7\}, \ldots$, $\{1,5,7\},\{2,4,5\},\{2,4,7\},\{4,5,7\}$

Proof: step (ii) - summary

- Lemma: if $\mathrm{R}_{\mathrm{c}}(\mathrm{n} ; \mathrm{k}-1)$ is finite for all n then $G_{c}(n ; k)$ is finite for all n
- Proof:
- Induction on n
- $G_{c}(k ; k)$ is finite
- We have shown that if $G_{c}(n-1 ; k)$ is finite then $G_{c}(n ; k)$ is finite
- Trick: show that $G_{c}(n ; k) \leq 1+R_{c}\left(G_{c}(n-1 ; k) ; k-1\right)$

Proof: step (iii)

- Lemma: $R_{c}(n ; k) \leq G_{c}(c(n-1)+1 ; k)$ for all n, k
- Proof:
- If $N=G_{c}(c(n-1)+1$; $k)$, we can find a good subset X with $c(n-1)+1$ elements
- If k-subset A of X has colour i, put min(A) into slot i
- E.g.: $\{1,2\},\{1,3\},\{1,5\},\{2,3\},\{2,5\},\{3,5\}$: put 1 and 3 to slot blue, 2 to slot green, 5 to any slot
- Each slot is monochromatic and at least one slot contains n elements (pigeonhole)!

Ramsey's theorem: proof summary

- $\mathrm{R}_{\mathrm{c}}(\mathrm{n} ; \mathrm{k})=$ smallest N s.t. \exists monochromatic n -subset
- $\mathrm{G}_{\mathrm{c}}(\mathrm{n} ; \mathrm{k})=$ smallest N s.t. \exists good n -subset
- Theorem: $R_{c}(n ; k)$ is finite for all c, n, k
(i) $R_{c}(n ; 1)$ is finite for all n
(ii) If $R_{c}(n ; k-1)$ is finite for all n then $G_{c}(n ; k)$ is finite for all n
- Induction: $G_{c}(n ; k) \leq 1+R_{c}\left(G_{c}(n-1 ; k) ; k-1\right)$
(iii) $R_{c}(n ; k) \leq G_{c}(c(n-1)+1 ; k)$ for all n, k

