DDA 2010, lecture 3: Ramsey's theorem

- A generalisation of the pigeonhole principle
- Frank P. Ramsey (1930):
 "On a problem of formal logic"
 - "... in the course of this investigation it is necessary to use certain theorems on combinations which have an independent interest..."

DDA 2010, lecture 3a: Introduction to Ramsey's theorem

 Notation of Ramsey numbers from Radziszowski (2009)

Basic definitions

Assign a colour from {1, 2, ..., c}
 to each k-subset of {1, 2, ..., N}

```
N = 4, k = 3, c = 2
\{1,2,3\}
\{1,2,4\}
\{1,3,4\}
\{2,3,4\}
```

```
N = 13, k = 1, c = 3
{1} {2} {3} {4}
{5} {6} {7} {8}
{9} {10} {11} {12}
{13}
```

$$N = 6, k = 2, c = 2$$
{1,2} {1,3} {1,4} {1,5} {1,6}
{2,3} {2,4} {2,5} {2,6}
{3,4} {3,5} {3,6}
{4,5} {4,6}

Basic definitions

Assign a colour from {1, 2, ..., c}
 to each k-subset of {1, 2, ..., N}


```
N = 6, k = 2, c = 2
{1,2} {1,3} {1,4} {1,5} {1,6}
{2,3} {2,4} {2,5} {2,6}
{3,4} {3,5} {3,6}
{4,5} {4,6}
```

Basic definitions

• $X \subset \{1, 2, ..., N\}$ is a *monochromatic subset* if all k-subsets of X have the same colour

$$N = 6, k = 2, c = 2$$
{1,2} {1,3} {1,4} {1,5} {1,6}
{2,3} {2,4} {2,5} {2,6}
{3,4} {3,5} {3,6}
{4,5} {4,6}

Ramsey's theorem

- Assign a colour from {1, 2, ..., c}
 to each k-subset of {1, 2, ..., N}
- X ⊂ {1, 2, ..., N} is a monochromatic subset if all k-subsets of X have the same colour
- Ramsey's theorem: For all c, k, and n there is a finite N such that any c-colouring of k-subsets of $\{1, 2, ..., N\}$ contains a monochromatic subset with n elements

Ramsey's theorem

- Assign a colour from {1, 2, ..., c}
 to each k-subset of {1, 2, ..., N}
- X ⊂ {1, 2, ..., N} is a monochromatic subset if all k-subsets of X have the same colour
- Ramsey's theorem: For all c, k, and n there is a finite N such that any c-colouring of k-subsets of {1, 2, ..., N} contains a monochromatic subset with n elements
 - The smallest such N is denoted by $R_c(n; k)$

Ramsey's theorem: k = 1

- k = 1: pigeonhole principle
- If we put N items into c slots, then at least one of the slots has to contain at least n items
 - Colour of the 1-subset {i} = slot of the element i
 - Clearly holds if $N \ge c(n-1) + 1$
 - Does not necessarily hold if $N \le c(n-1)$
 - $R_c(n; 1) = c(n-1) + 1$

- Complete graphs, red and blue edges
- If the graph is large enough, there will be a *monochromatic clique*
 - For example, $R_2(2; 2) = 2$, $R_2(3; 2) = 6$, and $R_2(4; 2) = 18$
 - A graph with 2 nodes contains a monochromatic edge
 - A graph with 6 nodes contains a monochromatic triangle

- Of course, we can equally well have:
 - red/blue edges
 - existing/missing edges

- Another interpretation: graphs
 - $\{u, v\}$ red: edge $\{u, v\}$ present
 - $\{u, v\}$ blue: edge $\{u, v\}$ missing
- Large monochromatic subset:
 - Large clique (red) or large independent set (blue)
 - Any graph with 6 nodes contains a clique with 3 nodes or an independent set with 3 nodes

- Sufficiently large graphs

 (N nodes) contain large
 independents sets (n nodes)
 or large cliques (n nodes)
 - You can avoid one of these, but not both
 - However, Ramsey numbers are large: here N is exponential in n

DDA 2010, lecture 3b: Proof of Ramsey's theorem

- Following Nešetřil (1995)
- Notation from Radziszowski (2009)

Definitions

- X ⊂ {1, 2, ..., N} is a monochromatic subset:
 if A and B are k-subsets of X,
 then A and B have the same colour
- X ⊂ {1, 2, ..., N} is a good subset:
 if A and B are k-subsets of X and min(A) = min(B),
 then A and B have the same colour
 - An example with c = 2 and k = 2:
 {1,2,3,5} is good but not monochromatic in the colouring
 {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,5}, {4,5}

Definitions

- X ⊂ {1, 2, ..., N} is a monochromatic subset:
 if A and B are k-subsets of X,
 then A and B have the same colour
- X ⊂ {1, 2, ..., N} is a good subset:
 if A and B are k-subsets of X and min(A) = min(B),
 then A and B have the same colour
 - $R_c(n; k) = \text{smallest } N \text{ s.t. } \exists \text{ monochromatic } n\text{-subset}$
 - $G_c(n; k) = \text{smallest } N \text{ s.t. } \exists \text{ good } n \text{-subset}$

Proof outline

- $R_c(n; k)$ = smallest N s.t. \exists monochromatic n-subset
- $G_c(n; k) = \text{smallest } N \text{ s.t. } \exists \text{ good } n\text{-subset}$
- Theorem: $R_c(n; k)$ is finite for all c, n, k
 - (i) $R_c(n; 1)$ is finite for all n
 - (ii) If $R_c(n; k-1)$ is finite for all n then $G_c(n; k)$ is finite for all n
 - (iii) $R_c(n; k) \le G_c(c(n-1) + 1; k)$ for all n, k

c is fixed throughout the proof

for each c

 $R_c(n; k) \forall n, k$

step (i): k = 1

 $R_c(n; k) \forall n$

induction on k

step (ii): k > 1

if $R_c(n; k-1) \forall n$ then $G_c(n; k) \forall n$

k > 1

if $R_c(n; k-1) \forall n$ then $R_c(n; k) \forall n$

step (iii): *k* > 1

if $G_c(n; k) \forall n$ then $R_c(n; k) \forall n$

$$k > 1$$
, $n = k$

if $R_c(x; k-1) \forall x$ then $G_c(n; k)$

induction on *n*

k > 1, n > k

if $R_c(x; k-1) \forall x$ and $G_c(n-1; k)$ then $G_c(n; k)$

Proof: step (i)

- Lemma: $R_c(n; 1)$ is finite for all n
- Proof:
 - Pigeonhole principle
 - $R_c(n; 1) = c(n-1) + 1$

Proof: step (ii) — outline

- Lemma: if $R_c(n; k-1)$ is finite for all n then $G_c(n; k)$ is finite for all n
- Proof:
 - Induction on n
 - **Basis**: $G_c(k; k)$ is finite
 - *Inductive step*: Assume that $M = G_c(n 1; k)$ is finite
 - Then we also have a finite $R_c(M; k-1)$
 - Enough to show that $G_c(n; k) \le 1 + R_c(M; k-1)$

Proof: step (ii)

```
f: {1,2,3} {1,2,4} {1,3,4} {2,3,4}
f': {2,3} {2,4} {3,4}
```

- $G_c(n; k) \le 1 + R_c(M; k 1)$ where $M = G_c(n 1; k)$
 - Let $N = 1 + R_c(M; k 1)$, consider any colouring f of k-subsets of $\{1, 2, ..., N\}$
 - Delete element 1:
 colouring f' of (k 1)-subsets of {2, 3, ..., N}
 - Find an f'-monochromatic M-subset X ⊂ {2, 3, ..., N}
 - Find an f-good (n-1)-subset $Y \subset X$
 - {1} ∪ *Y* is an *f*-good *n*-subset of {1, 2, ..., *N*}

Proof: step (ii)

In real life, these constants would be much larger...

- A fictional example: N = 7, M = 5, n = 5, k = 3
 - Original colouring *f*: {1,2,3}, {1,2,4}, {1,2,5}, {1,2,6}, {1,2,7}, ..., {1,6,7}, {2,3,4}, ..., {5,6,7}
 - Colouring $f': \{2,3\}, \{2,4\}, \{2,5\}, \{2,6\}, \{2,7\}, \dots, \{6,7\}$
 - f'-monochromatic M-subset {2,3,4,5,7} of {2,3,..., N}: {2,3}, {2,4}, {2,5}, {2,7}, ..., {5,7}
 - *f*-good (*n*–1)-subset {2,4,5,7}: {2,4,5}, {2,4,7}, {4,5,7}
 - {1,2,4,5,7} is *f*-good: {1,2,4}, {1,2,5}, {1,2,7}, ..., {1,5,7}, {2,4,5}, {2,4,7}, {4,5,7}

Proof: step (ii)

```
N-1 \geq R_{\mathcal{C}}(M; \ k-1)
```

 $M \geq G_c(n-1; k)$

- A fictional example: N = 7, M = 5, $n \neq 5$, k = 3
 - Original colouring $f: \{1,2,3\}/\{1,2,4\}, \{/,2,5\}, \{1,2,6\}, \{1,2,7\}, \dots, \{1,6,7\}, \{2,3,4\}, /\dots, \{5,6,7\}$
 - Colouring $f': \{2,3\}, \{2,4\}, \{2,5\}, \{2,6\}, \{2,7\}, \dots, \{6,7\}$
 - f'-monochromatic M-subset {2,3,4,5,7} of {2,3,...,N}: {2,3}, {2,4}, {2,5}, {2,7}, ..., {5,7}
 - *f*-good (*n*–1)-subset {2,4,5,7}: {2,4,5}, {2,4,7}, {4,5,7}
 - {1,2,4,5,7} is *f*-good: {1,2,4}, {1,2,5}, {1,2,7}, ..., {1,5,7}, {2,4,5}, {2,4,7}, {4,5,7}

Proof: step (ii) — summary

- Lemma: if $R_c(n; k-1)$ is finite for all n then $G_c(n; k)$ is finite for all n
- Proof:
 - Induction on n
 - $G_c(k; k)$ is finite
 - We have shown that if $G_c(n-1; k)$ is finite then $G_c(n; k)$ is finite
 - Trick: show that $G_c(n; k) \le 1 + R_c(G_c(n-1; k); k-1)$

Proof: step (iii)

- Lemma: $R_c(n; k) \le G_c(c(n-1) + 1; k)$ for all n, k
- Proof:
 - If $N = G_c(c(n-1) + 1; k)$, we can find a good subset X with c(n-1) + 1 elements
 - If k-subset A of X has colour i, put min(A) into slot i
 - E.g.: {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}: put 1 and 3 to slot blue, 2 to slot green, 5 to any slot
 - Each slot is monochromatic and at least one slot contains n elements (pigeonhole)!

Ramsey's theorem: proof summary

- $R_c(n; k)$ = smallest N s.t. \exists monochromatic n-subset
- $G_c(n; k) = \text{smallest } N \text{ s.t. } \exists \text{ good } n\text{-subset}$
- Theorem: $R_c(n; k)$ is finite for all c, n, k
 - (i) $R_c(n; 1)$ is finite for all n
 - (ii) If $R_c(n; k-1)$ is finite for all n then $G_c(n; k)$ is finite for all n

c is fixed

- Induction: $G_c(n; k) \le 1 + R_c(G_c(n-1; k); k-1)$
- (iii) $R_c(n; k) \le G_c(c(n-1) + 1; k)$ for all n, k