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Exercise 11: Sample Solution

1 Communication Complexity of Set Disjointness

a) We obtain

MDISJ =



DISJ 000 001 010 011 100 101 110 111 ← x
000 1 1 1 1 1 1 1 1
001 1 0 1 0 1 0 1 0
010 1 1 0 0 1 1 0 0
011 1 0 0 0 1 0 0 0
100 1 1 1 1 0 0 0 0
101 1 0 1 0 0 0 0 0
110 1 1 0 0 0 0 0 0
111 1 0 0 0 0 0 0 0
↑ y


.

b) When k = 3, a fooling set of size 4 for DISJ is e.g.

S1 := {(000, 111), (001, 110), (010, 101), (100, 001)}.

Entries in MDISJ corresponding to elements of S1 are marked dark gray. However, a fooling
set does not always need to be on a diagonal of the matrix. An example for such a set is

S2 := {(001, 110), (010, 001), (011, 100), (100, 010)},

and marked light gray in MDISJ.

c) In general, S := {(x, x) | x ∈ {0, 1}k} is a fooling set for DISJ. To prove this, we note: If y > x
then there is always an index i such that xi = yi = 1 and we conclude DISJ(x, y) = 0. Second,
we note for any elements (x1, y1), (x2, y2) of any fooling set that x1 6= x2. Otherwise it was
(x1, yj) = (x2, yj) for j ∈ {1, 2} and thus f(x2, y1) = f(x1, y2) = f(x1, y1) = f(x2, y2) =: z
which contradicts the definition of a fooling set. Similarly it is y1 6= y2.

• For any (x, y) ∈ S it is DISJ(x, y) = 1.

• Now consider any (x1, y1) 6= (x2, y2) ∈ S. Since x1 6= x2 and y1 6= y2, we conclude that
either y2 > x1, in which case DISJ(x1, y2) = 0, or y1 > x2 causing DISJ(x2, y1) = 0.



2 Distinguishing Diameter 2 from 4

a) • Choosing v ∈ L takes O(D): Use any leader election protocol from the lecture. E.g.
the node with smallest ID in L can be elected as a leader. Then this node will be v.

• Computing a BFS tree from a vertex usually takes O(D). Since in our setting all graphs
are guaranteed to have constant diameter, the time required for this is O(1). As node
v is in L, at most N1(v) < s executions of BFS are performed. These can be started
one after each other and yield a complexity of O(s).

• The comment states: Computing an H-dominating set DOM takes time O(D) = O(1).

• Since |DOM | ≤ n log n
s , the time complexity of computing all BFS trees from each

vertex in DOM (one after each other) is O(n log n
s ).

• Checking whether all trees have depth of at most 2 can be done in O(D) = O(1) as
well: Each node knows its depth in any of the computed trees. If its depth is 3 or
4, it floods “diameter is 4” to the graph. If a node gets such a message from several
neighbors, it only forwards it to those from which it did not receive it yet. If any node
did not receive message “diameter is 4” after 4 rounds, it decides that the diameter is
2. Otherwise it decides that the diameter is 4. This decision will be consistent among
all nodes.

• By adding all these runtimes, we conclude that the total time complexity of Algorithm

2-vs-4 is O
(
s + n log n

s

)
.

b) By deriving O
(
s + n log n

s

)
as a function of s we can argue that O

(
s + n log n

s

)
is minimal

for s =
√
n log n. Thus the runtime of the Algorithm is O(

√
n log n).

c) Since in this case no BFS tree can have depth larger than 2 the algorithm returns “diameter
is 2”.

d) Using the triangle inequality we obtain that d(w, v) ≥ d(u, v) − d(w, v) = 3 thus the BFS
tree of w has at least depth 3. Therefore Algorithm 2-vs-4 decides “diameter is 4”.

e) If there is a w ∈ L such that a BFS started in w has depth at least 3, we are done. In the
other case it is d(u,w) ≤ 2. Using d) we conclude that d(u,w) = 2. Let w′ be a node that
connects u to w. Since w′ ∈ N1(w) and w ∈ L, Algorithm 2-vs-4 executes a BFS from w′.
Then we apply d) using that w′ ∈ N1(u).

f) Since DOM is a dominating set for H = V \L = V , it follows immediately that the algorithm
executes a BFS from a node w ∈ D ∩N(u) 6= ∅. Now apply d).

g) A careful look into the construction of family G reveals that we essentially showed an
Ω(n/ log n) lower bound to distinguish diameter 2 from 3. Since the graphs considered
here cannot have diameter 3, the studied algorithm does not contradict this lower bound.

3 Fast Computation of an H-Dominating Set DOM

Note that the simplified Chernoff Bound suffices for the problems below, but in many other settings
the general version is favorable. Also note that most of the statements below could be proven in
a not extremely difficult way without using a Chernoff Bound. But using it makes life easier!

a) To take away the fear of Chernoff, we started with a nice warm up. Since all coin tosses
are independent, we can use linearity of expectation and obtain E [X] = N

2 . Applying the

simplified Chernoff Bound (Pr
[
X ≤ 1

2E[X]
]
≤ e−E[X]/8) yields Pr

[
X ≤ N

4

]
≤ e−N/16.
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b) Denote by Xv :=
∑

u∈N(v) Xu the number of marked nodes in the neighborhood of v. Since

each node marks itself independently and v has |N(v)| neighbors, we can use linearity of
expectation to obtain

E [Xv] =
∑

u∈N(v)

E [Xu] =
8(c + 1) · |N(v)| · lnn

s
.

Since v is in H, we know that N(v) ≥ s and conclude that E [Xv] ≥ 8(c + 1) · lnn.

c)

Pr [Xv ≥ 1] ≥ 1− Pr [Xv ≤ 4(c + 1) · lnn] ≥ 1− e−E[Xv ]/8 ≥ 1− e−(c+1)·lnn = 1− n−(c+1).

d) The probability that each out of |H| ≤ n nodes has a neighbor that is in H is at least(
1− 1

nc+1

)n
. Using the fact that (1 + x/n)n ≥ ex we obtain that this is less than e−n

−c

.
Using the fact that ex ≥ 1 +x we conclude that this probability is higher than 1−n−c. This
is w.h.p..

e) Denote by X :=
∑

u∈V Xu the number of nodes in S. Then the expected number is E[X] =

8(c + 1)
√
n lnn. Applying the simplified Chernoff Bound yields

Pr

[
|S| ≥ 4(c + 1)

n lnn

s

]
≥ 1− e−(c+1)·

√
n lnn = 1− 2−Ω(

√
n lnn).

f) No round of communication is necessary! Each node can internally decide whether to join S
or not. This is in some sense better than what we assumed during the analysis of Algorithm
2-vs-4. However, it is not always realistic that all nodes know s and n and start at the same
time – this needs some preprocessing!
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