Principles of Distributed Computing Exercise 11

1 Communication Complexity of Set Disjointness

In the lecture we studied the communication complexity of the equality function. Now we consider the disjointness function: Alice and Bob are given subsets $X, Y \subseteq\{1, \ldots, k\}$ and need to determine whether they are disjoint. Each subset can be represented by a string. E.g. we define the $i^{t h}$ bit of $x \in\{0,1\}^{k}$ as $x_{i}:=1$ if $i \in X$ and $x_{i}:=0$ if $i \notin X$. Now define disjointness of X and Y as:

$$
\operatorname{DISJ}(x, y):= \begin{cases}0 & : \text { there is an index } i \text { such that } x_{i}=y_{i}=1 \\ 1 & : \text { else }\end{cases}
$$

a) Write down $M^{D I S J}$ for the $D I S J$-function when $k=3$.
b) Use the matrix obtained in a) to provide a fooling set of size 4 for $D I S J$ in case $k=3$.
c) In general, prove that $C C(D I S J)=\Omega(k)$.

2 Distinguishing Diameter 2 from 4

In the lecture we stated that when the bandwidth of an edge is limited to $O(\log n)$, the diameter of a graph can be computed in $O(n)$. In this problem, we show that we can do faster in case we know that all networks/graphs on which we execute an algorithm have either diameter 2 or diameter 4. We start by partitioning the nodes into sets: Let $s:=s(n)$ be a threshold and define the set of high degree nodes $H:=\{v \in V \mid d(v) \geq s\}$ and the set of low degree nodes $L:=\{v \in V \mid d(v)<s\}$. Next, we define: An H-dominating set $\mathcal{D} O M$ is a subset $\mathcal{D} O M \subseteq V$ of the nodes such that each node in H is either in the set $\mathcal{D} O M$ or adjacent to a node in the set $\mathcal{D} O M$. Assume in the following, that we can compute an H-dominating set $\mathcal{D} O M$ of size $\frac{n \log n}{s}$ in time $O(D)$.
a) What is the distributed runtime of Algorithm 2-vs-4 (stated next page)? In case you believe that the distributed implementation of a step is not known from the lecture, find a distributed implementation for this step! Hint: The runtime depends on s and n.
b) Find a function $s:=s(n)$ such that the runtime is minimized (in terms of n).
c) Prove that if the diameter is 2, then Algorithm 2-vs-4 always returns 2 .

Now assume that the diameter of the network is 4 and that we know vertices u and v with distance 4 to each other.

```
Algorithm 1"2-vs-4". Input: \(G\) with diameter 2 or 4 Output: diameter of \(G\)
    if \(L \neq \emptyset\) then
        choose \(v \in L \quad \triangleright\) We know: This takes \(O(D)\).
        compute a BFS tree from each vertex in \(N_{1}(v)\)
    else
        compute an \(H\)-dominating set \(\mathcal{D O M} \quad \triangleright\) Use: Assumption or Problem 3)
        compute a BFS tree from each vertex in \(\mathcal{D O M}\)
    end if
    if all BFS trees have depth 2 or 1 then
        return 2
    else
        return 4
    end if
```

d) Prove that if the algorithm performs a BFS from at least one node $w \in N_{1}(u)$ it decides "the diameter is 4 ".
e) In case $L \neq \emptyset$: Prove that the algorithm either performs a BFS of depth at least 3 from some node w. Hint: use d)
f) In case $L=\emptyset$: Prove that the algorithm performs a BFS from at least one node in $N(u)$.
g) Give a high level idea, why you think that this does not violate the lower bound of $\Omega(n / \log n)$ presented in the lecture!
\mathbf{h}^{*}) Prove or disprove: If the diameter is 2 , then Algorithm 2 -vs- 4 will always compute some BFS tree of depth exactly 2.

3 Computation of an H -Dominating Set $\mathcal{D} O M$

Solving this problem is optional/voluntary but helps understanding Chernoff Bounds by using a simplified version (Bound 2 stated in Problem Set 9 when $\delta:=1 / 2$.) We show that an H-Dominating Set $\mathcal{D} O M$ (as used in Algorithm 2 -vs-4) can be computed fast.
Theorem 1 (Awesome Chernoff Bounds - again :-) Let $X:=\sum_{i=1}^{N} X_{i}$ be the sum of N independent $0-1$ random variables X_{i}, then $\operatorname{Pr}\left[X \leq \frac{1}{2} \mathbb{E}[X]\right] \leq e^{-\mathbb{E}[X] / 8}$.
a) Warm up: Consider N tosses of a perfect coin. Let the random variable X_{i} be 1 if the $i^{\text {th }}$ coin toss results in "head" and let X_{i} be 0 otherwise. Define $X:=\sum_{i=1}^{N} X_{i}$, compute $\mathbb{E}[X]$ and show that $\operatorname{Pr}\left[X \leq \frac{N}{4}\right] \leq e^{-N / 16}$.
b) Now we get back to our original problem: Assume all nodes know n and s. Let each node in V mark itself with probability $\frac{8(c+1) \cdot \ln n}{s}$, where \ln is the natural $\operatorname{logarithm}$ with base e and c is an arbitrary constant. Let X_{u}^{s} be the random variable indicating whether node u marked itself. That is $X_{u}:=1$ if u marked itself and $X_{u}:=0$ in the other case. Define $X^{v}:=\sum_{u \in N(v)} X_{u}$. Show that if $v \in H$, then $\mathbb{E}\left[X^{v}\right]$ is at least $8(c+1) \cdot \ln n$.
c) Using the Chernoff Bound, show that w.h.p. $v \in H$ has at least one marked neighbor.

Hint: Use $\operatorname{Pr}[X \leq 4 c \cdot \ln n] \leq e^{-\mathbb{E}[X] / 8}$ as an intermediate step.
d) What is the probability that the set S of all marked nodes is a dominating set of H ?

Hint: Use $(1+x / n)^{n} \geq e^{x}$ and $e^{x} \geq 1+x$.
e) What is the expected size of S ? Use Chernoff and prove $\operatorname{Pr}\left[|S| \geq 4(c+1) \cdot \frac{n \ln n}{s}\right] \geq$ $1-2^{-\Omega(\sqrt{n \ln n})}$.
f) What is the time complexity of computing an H-dominating set $\mathcal{D} O M$ of size $O\left(\frac{n \log n}{s}\right)$ when all nodes know s and n and start at the same time?

