

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

FS 2012

Prof. R. Wattenhofer Stephan Holzer

Principles of Distributed Computing Exercise 11

1 Communication Complexity of Set Disjointness

In the lecture we studied the communication complexity of the equality function. Now we consider the disjointness function: Alice and Bob are given subsets $X, Y \subseteq \{1, ..., k\}$ and need to determine whether they are disjoint. Each subset can be represented by a string. E.g. we define the i^{th} bit of $x \in \{0,1\}^k$ as $x_i := 1$ if $i \in X$ and $x_i := 0$ if $i \notin X$. Now define disjointness of X and Y as:

$$DISJ(x,y) := \begin{cases} 0 & : \text{ there is an index } i \text{ such that } x_i = y_i = 1 \\ 1 & : \text{ else} \end{cases}$$

- a) Write down M^{DISJ} for the DISJ-function when k=3.
- b) Use the matrix obtained in a) to provide a fooling set of size 4 for DISJ in case k=3.
- c) In general, prove that $CC(DISJ) = \Omega(k)$.

2 Distinguishing Diameter 2 from 4

In the lecture we stated that when the bandwidth of an edge is limited to $O(\log n)$, the diameter of a graph can be computed in O(n). In this problem, we show that we can do faster in case we know that all networks/graphs on which we execute an algorithm have either diameter 2 or diameter 4. We start by partitioning the nodes into sets: Let s := s(n) be a threshold and define the set of high degree nodes $H := \{v \in V \mid d(v) \geq s\}$ and the set of low degree nodes $L := \{v \in V \mid d(v) < s\}$. Next, we define: An H-dominating set $\mathcal{D}OM$ is a subset $\mathcal{D}OM \subseteq V$ of the nodes such that each node in H is either in the set $\mathcal{D}OM$ or adjacent to a node in the set $\mathcal{D}OM$. Assume in the following, that we can compute an H-dominating set $\mathcal{D}OM$ of size $\frac{n \log n}{s}$ in time O(D).

- a) What is the distributed runtime of Algorithm 2-vs-4 (stated next page)? In case you believe that the distributed implementation of a step is not known from the lecture, find a distributed implementation for this step! **Hint: The runtime depends on** s **and** n.
- **b)** Find a function s := s(n) such that the runtime is minimized (in terms of n).
- c) Prove that if the diameter is 2, then Algorithm 2-vs-4 always returns 2.

Now assume that the diameter of the network is 4 and that we know vertices u and v with distance 4 to each other.

```
Algorithm 1 "2-vs-4".
                                 Input: G with diameter 2 or 4
                                                                     Output: diameter of G
 1: if L \neq \emptyset then
       choose v \in L
                                                                      \triangleright We know: This takes O(D).
 2:
       compute a BFS tree from each vertex in N_1(v)
3:
4: else
       compute an H-dominating set \mathcal{DOM}
                                                                  ▶ Use: Assumption or Problem 3)
 5:
       compute a BFS tree from each vertex in \mathcal{DOM}
6:
 7: end if
8: if all BFS trees have depth 2 or 1 then
       return 2
9:
10: else
       return 4
11:
12: end if
```

- d) Prove that if the algorithm performs a BFS from at least one node $w \in N_1(u)$ it decides "the diameter is 4".
- e) In case $L \neq \emptyset$: Prove that the algorithm either performs a BFS of depth at least 3 from some node w. Hint: use d)
- f) In case $L = \emptyset$: Prove that the algorithm performs a BFS from at least one node in N(u).
- g) Give a high level idea, why you think that this does not violate the lower bound of $\Omega(n/\log n)$ presented in the lecture!
- h*) Prove or disprove: If the diameter is 2, then Algorithm 2-vs-4 will always compute some BFS tree of depth exactly 2.

3 Computation of an H-Dominating Set $\mathcal{D}OM$

Solving this problem is optional/voluntary but helps understanding Chernoff Bounds by using a simplified version (Bound 2 stated in Problem Set 9 when $\delta := 1/2$.) We show that an H-Dominating Set $\mathcal{D}OM$ (as used in Algorithm 2-vs-4) can be computed fast.

Theorem 1 (Awesome Chernoff Bounds – again :-) Let $X := \sum_{i=1}^{N} X_i$ be the sum of N independent 0-1 random variables X_i , then $Pr\left[X \leq \frac{1}{2}\mathbb{E}[X]\right] \leq e^{-\mathbb{E}[X]/8}$.

- a) Warm up: Consider N tosses of a perfect coin. Let the random variable X_i be 1 if the i^{th} coin toss results in "head" and let X_i be 0 otherwise. Define $X := \sum_{i=1}^{N} X_i$, compute $\mathbb{E}[X]$ and show that $Pr\left[X \leq \frac{N}{4}\right] \leq e^{-N/16}$.
- b) Now we get back to our original problem: Assume all nodes know n and s. Let each node in V mark itself with probability $\frac{8(c+1)\cdot \ln n}{s}$, where \ln is the natural logarithm with base e and c is an arbitrary constant. Let X_u be the random variable indicating whether node u marked itself. That is $X_u := 1$ if u marked itself and $X_u := 0$ in the other case. Define $X^v := \sum_{u \in N(v)} X_u$. Show that if $v \in H$, then $\mathbb{E}[X^v]$ is at least $8(c+1)\cdot \ln n$.
- c) Using the Chernoff Bound, show that w.h.p. $v \in H$ has at least one marked neighbor. Hint: Use $Pr[X \le 4c \cdot \ln n] \le e^{-\mathbb{E}[X]/8}$ as an intermediate step.
- d) What is the probability that the set S of all marked nodes is a dominating set of H? Hint: Use $(1 + x/n)^n \ge e^x$ and $e^x \ge 1 + x$.
- e) What is the expected size of S? Use Chernoff and prove $Pr[|S| \ge 4(c+1) \cdot \frac{n \ln n}{s}] \ge 1 2^{-\Omega(\sqrt{n \ln n})}$.
- f) What is the time complexity of computing an H-dominating set $\mathcal{D}OM$ of size $O(\frac{n \log n}{s})$ when all nodes know s and n and start at the same time?