
Distributed
 Computing

FS 2012 Prof. R. Wattenhofer
Jara Uitto

Principles of Distributed Computing

Exercise 10: Sample Solution

1 Distributed Network Partitioning

For this exercise, we define the neighborhood of a node v as Ni(v) := {w ∈ V | d(v, w) ≤ i}.
Informally, Ni(v) denotes the set of nodes within distance i to v.

a) The problem is that without root, we have no parents or children. We use an echo/flooding
algorithm on the tree to determine the node with the lowest ID and appoint it as leader.
We assume w.l.o.g. that no two messages are received by a node at the same time. Each leaf
sends its ID to its neighbor. All other nodes wait until they have received the IDs from all
but one neighbor. Then they choose the smallest ID amongst these and their own and send
it to the remaining neighbor. If a node receives a message after sending its own, it compares
the received ID to the one it sent. The smaller of the two is the ID of the leader, which is
then flooded to the remaining n− 2 nodes.

Correctness: Observe that each node determines the smallest ID in its subtree when the
edge to the neighbor that has not sent a message yet is deleted. The last two nodes will send
each other a message, after the subtrees corresponding to the two neighboring nodes have
been processed (recall that messages do not arrive at identical times). Subsequently, they
will broadcast the minimum of the lowest IDs of the two subtrees as the ID of the leader.
Thus all nodes will be informed about an unique ID specifying the leader.

Complexity: The running time is O(D) ≤ O(n), where D is the diameter. The message
complexity is O(n) since a tree has n− 1 edges.1

b) The leader starts modified flooding/echo rounds with increasing diameter until the cluster
criterion is met. Simultaneously, a BFS tree around the leader is constructed that will be
needed to reduce the number of messages sent. Initially, the tree consists of the cluster leader
l only, which is considered the root.

In round i the cluster leader initiates a flooding/echo on the BFS tree. A node that joined
the BFS tree in round i− 1 (an (i− 1)-hop neighbor of l, or l itself if i = 1) will notify all its
direct neighbors within the whole graph. Once a node v not already in the BFS tree receives
such a notification from a node p, it joins the BFS tree with p as parent and informs p about
this. If a node v already in the BFS tree receives such a notification from p, it informs p
that it will not join the BFS tree. All nodes in the tree accumulate the number of newly
joined nodes in their subtree of the BFS tree and return them to their parent. Thus l will
be informed about the number |Ni(l)| of nodes within range i when round i finishes after at
most 2i time units.

1For more details, we refer to Algorithms 11 and 12 from the script.

This procedure is started with i = 1 and stops when 2|Ni−1(l)| ≥ |Ni(l)|. Then l informs the
nodes in Nr(l) that they participate in its cluster by a broadcast in the constructed BFS tree.
The correctness of this procedure is obvious from the construction. The time complexity is∑r+1

i=1 2i = (r + 1)(r + 2) for the flooding/echo steps, and additional r + 1 time units for the
final broadcast. In total we get a time complexity of O(r2). Due to the stop criterion we
have |C| ≥ 2r. Thus we have r ≤ log |C|, implying O(r2) ⊆ O(log2 |C|) ⊂ O(|C|).

c) An intuitive argument why this property holds goes as follows: A tree has about as many
edges as nodes. In each round we sent two messages along the edges of the current tree in
order to double the number of nodes in the tree. Hence, the number of messages sent within
the tree is in the order of the number of nodes in the final tree, i.e. |Nr(l)|, which can be
at most |E′| since each node in the tree has at least one edge. Furthermore, we sent two
messages over the edges with only one endpoint in the cluster in the last step of the cluster
construction and there can be at most |E′| such edges.

Let us now show the claim formally: The ith step of the construction from b) will require two
messages to be sent over all edges from nodes that joined the BFS tree in the (i− 1)th step,
plus two messages per edge in the already constructed BFS tree. For the former, observe that
during the (stepwise) construction of the BFS tree we send messages over each edge in E′ at
most twice, as E′ is the set of edges with at least one endpoint in the final cluster. For the
latter, note that the number of edges in the tree after the ith step is |Ni(l)|−1. We have the
condition |Ni(l)| > 2|Ni−1(l)| for i ∈ {2, . . . , r}, hence we can estimate |Ni(l)| ≤ 2−r+i|Nr(l)|
for i ∈ {1, . . . , r}. Summing over i, we may estimate the total number of messages on the
edges of the BFS tree by

r∑
i=1

2(|Ni(l)| − 1) < 2|Nr(l)|
r∑

i=1

2−r+i = 2|Nr(l)|
r−1∑
i=0

2−i < 4|Nr(l)| ≤ 4|E′|.

Thus, in total at most (4 + 2)|E′| ∈ O(|E′|) messages are sent during the construction phase
of the cluster in the worst case.

d) Consider the tree to be rooted at the first leader. We apply a distributed depth-first search
strategy on the tree. After each cluster construction step, the current leader continues the
depth-first search for the next leader, which is the next node on the search path that is not
assigned to a cluster yet. In the course of the algorithm execution, each edge of the tree is
hence traversed twice and thus the time and message complexity is O(n).

e) Let Ci for i ∈ I, denote the vertex sets of the constructed clusters and E′i the edges “removed”
after the cluster construction of the ith cluster. By c) the total number of messages due to
the cluster construction is bounded by

∑
i O(|E′i|) = O(m), since the sets E′i are disjoint.

By part b) of the exercise we have a worst-case estimate for the (total) time complexity of
the cluster construction of

∑
i O(|Ci|) = O(n), using that the vertex sets of the clusters are

disjoint. Finally we have to add O(n) messages and O(n) time due to leader election, which
was shown in d). Putting everything together, we conclude that the time complexity is O(n)
and the message complexity is O(n + m) = O(m).

2

