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Overview: Worst-Case Analysis of DES

o

» Ski Rental
— Randomized Ski Rental
— Lower Bounds

+ The TCP Acknowledgement Problem
+ The TCP Congestion Control Problem
— Bandwidth in a Fixed Interval
— Multiplicatively Changing Bandwidth
— Changes with Bursts

+ Many application domains are not Poisson distributed!

— sometimes it makes sense to assume that events are distributed in the
worst possible way (e.g. in networks, packets often arrive in bursts)

[l
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Th

eory of Renting Skis

Scenario
— you start a new hobby, e.g. skiing
— you don‘t know whether you will like it
— expensive equipment ~ 1 kFr

3 Alternatives
— just buy a new equipment (optimistic)
— always renting (pessimistic)
— first rent it a few times before you buy (down-to-earth)

You choose the pragmatic way, but Murphy’s law will strike!
— first you rent, but as soon as you buy, you will lose interest in skiing
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Ski Rental Problem

o ]
* Expenses

— buying: 1 kFr

— renting: 1 kFr per month

» Scenario
— first rent it for z months, then buy it.
— after u months you will lose your interest in skiing
2 cases:
u <z > cost,(u) = ukFr
u >z - cost,(u)=(z+1)kFr

* If you are a clairvoyant, then ... m
u <1 month > just renting is better > cost,(u) = u kFr S
u > 1 month - just buying is better > cost,,(u) = 1 kFr §

= cost,,(u) = min(u, 1)
“ -
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Competitive Analysis

O 0

+ Definition
An online algorithm A is c-competitive if for all finite input sequences |
cost,(l) < ¢ cost (1) + k
where k is a constant independent of the input.
If kK = 0, then the online algorithm is called strictly c-competitive.

*  When strictly c-competitive, it holds
cost a(u) P
costopt(2)

* Example
— Ski rental is strictly 2-competive. The best algorithm is z = 1.
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Randomized Ski Rental

o

+ Deterministic Algorithm

— has a big handicap, because the adversary knows z and can always
present a u which is worst-case for the algorithm

— only hope: algorithm makes random decisions
* Randomized Algorithm

— chooses randomly between 2 values z, und z, (with z, < z,)
with probabilities p, and p, = (1 - p,)

u ifu <z
costa(u) =4 pr- (2 +1)+pa-u if 2z <u<
pro(r+H 1) +p2-(=+1) ifzm<u

* Example

- z="%,2,=1,p,=2/5,p,=3/5
— E[c] = cost,/ cost,, = 1.8

What about choosing
randomly between more
than 2 values???
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Randomized Ski Rental with infinitely many Values (1)

o O
) 1t '}
Let. r(u, Z) be the Competltlve Uninteresting for Adv:
ratio for all pairs of u and z Player will always buy early
+  We are looking for the Comp. ratio is (z+1)/ 1

expected competitive ratio E[c]

* Adversary chooses u with
uniform distribution

”r(u z)dzdu

j [dzdu

= %+ LO Lo Z;—ldzdu

Good for Adv:
Comp. ratio is
(z+1)/u

Good for Algo
Comp. ratio is
u/u

Adversary/Input: u

=1.75
0 . . |
Algorithm: z
A
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Randomized Ski Rental with infinitely many Values (2)

o

» Algorithm chooses z with probability distribution p(z)
— it chooses p(z) such that it minimizes E[c]

» Adversary chooses u with probability distribution d(u)
— it chooses d(u) such that it maximized E[c]

JE e D p(2)d(u)dzdu + L [ up()d(u)dzdu
I fup(2)d(u)d xdu

Ip(z) = [du) =1 |

Elc] =

Grood for Adv:
Comp. mtio is
{z+i)iu

* This is a very hard task!

Adversary Tnput: u

Good for Algo
Comp. rtio is
u/uw

- We should make the problem independent
of the adversarial distribution d(u).

g D 0 Algorithm: z
g
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Randomized Ski Rental with infinitely many Values (3)

o
* |dea
Choose the algorithm’s probability function p(z) such that
cost,(u) < ¢ cost,,(u) for all u
-> adversarial distribution d(u) doesn’t matter anymore

¢ cost,,(u) = u for all u between 0 und 1

[l( +1); d+/u p(2)dz < c-

with / p(2)dz =1

* Having a hunch: the best probability function p(z) will be an equality
=~ With p(=) = .~ we have an algorithm that is ——;-competitive in
expectation.

AN
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Can we get any better??? = Lower Bounds

o
* Von Neumann / Yao Principle
Choose an distribution over problem instances (for ski rental, e.g. d(u)).
If for this distribution all deterministic algorithms cost at least c, the ¢ is
a lower bound for the best possible randomized algorithm.

+ Ski Rental
— we are in a lucky situation, because we can parameterize all possible
deterministic algorithms by z = 0
— choose a distribution of inputs with d(u) 20 and [ d(u) =

« Example
d(u)=1/zfor0<u< 1 and d(=) = %
- cost,_q(d(u)) = cost,,(d(u)) = 1
- cost,_,(d(u)) = cost,.,(d(u)) > 5/4 >c=1
> costom(d( ) =
= c/costy, = /3—133
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TCP: Transmission Control Protocol

o

* Layer 4 Networking Protocol
— transmission error handling

| data fink | network
physical &3 data link

physical

— correct ordering of packets

— exponential (“friendly”) slow start

network

mechanism: should prevent i neserk
network overloading by new [ physical |
connections setwork

— flow control: prevents buffer
overloading

— congestion control: should
prevent network overloading
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Packet Acknowledgment

o

Sender
» Sequence number in packet header
+  “Window” of up to N consecutive unack’ed packets allowed

send_base  nexiseqnum dready uscble, not
v ¥ ack’'ed yet sent
TR CLLEORNI 0000000 | semimetes [ ot
£ window size —* i
N

» ACK(n): ACKs all packets up to and including sequence number n
— a.k.a. cumulative ACK
— sender may get duplicate ACKs
timer for each in-flight packet
timeout(n): retransmit packet n and all higher seg# packets in
window

il
\
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The TCP Acknowledgment Problem

+ Definition
The receiver’s goal is a scheme which minimizes the number of
acknowledgments plus the sum of the latencies for each packet, where
the latency of a packet is the time difference from arrival to

acknowledgment.
+ Given
n packet arrivals, at times: a,, a,, ..., a, =
k acknowledgments, at times t, t,, ..., t, =
latency(i) = t; — a, where j such that t; ; <&, <t ’—r'_r*
*  Minimize

b Received packets

(k + i latency(i )] Baiks ’J

i=1 1 Acks

time

-

\.{_ -
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The TCP Acknowledgment Problem: z=1 Algorithm (1)
o e}
« z =1 Algorithm is: Whenever a rectangle with area z = 1 does fit
between the two curves, the receiver sends an acknowledgement,
acknowledging all previous packets.

A Received packets

—
IJ_
]
Packs | N
P
T — B
; | Alg
| 2= time
- ! -
N
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The TCP Acknowledgment Problem: z=1 Algorithm (2)

« Lemma

— The optimal algorithm sends an ACK between any pair of consecutive
ACKs by algorithm with z = 1.

e Proof

— For the sake of contradiction, assume that, among all algorithms who
achieve the minimum possible cost, there is no algorithm which sends
an ACK between two ACKs of the z = 1 algorithm.

— We propose to send an additional ACK at the beginning (left side) of
each z = 1 rectangle. Since this ACK saves latency 1, it compensates
the cost of the extra ACK.

— That is, there is an optimal algorithm who chooses this extra ACK.

\\/_ -
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The TCP Acknowledgment Problem: z=1 Algorithm (3)

* Theorem: The z = 1 algorithm is 2-competitive.

b Received packets

oplt

|_ time

« Similarity to Ski Rental
— it's possible to choose any z

— if you wait for a rectangle of size z with probability p(z) = e#/(e-1)
- randomized TCP ACK solution, which is e/(e-1) competitive
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Simple TCP Congestion Scenario

o

congestion

too many sources sending too much data

too fast for network to handle

* two equal senders,

Host A

two receivers =P Ain ofiginal dato ™2 Aot
* one router with Host B
infinite buffer space .
and with service
rate C 1 e
et el
router with
infinite buffers
* large delays 12
when congested 3
*  maximum 3 S
achievable <
throughput i
C/2 Cl2
A R A
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The TCP Congestion Control Problem

o
+ Main Question
How many packets per second can a sender inject into the network
without overloading it?
* Assumptions
— sender does not know the bandwidth between itself and the receiver
— the bandwidth might change over time

¢ Model
— time divided into

periods {t} |:i:

— unknown bandwidth —]
threshold u,

— sender transmits

packets

X packets o 1 2 3 4 5 6 7
+ Gain Function
- X Su = gain, = x,
- X >Uu; > gain, =0
A
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Competitive Analysis (2)

o

» Definition

An online algorithm A is strictly c-competitive if for all finite

input sequences |

cost(l) = ¢ costy(1), or
c gain(1) 2 gain(1).

¢  The Dynamic Model

— algorithm: chooses a sequence { x, }
— adversary: knows the algorithm’s sequence and chooses a

sequence { u, }
* Problem

— Adversary is too strong: Vt: u, < x, 2 gain, =0

* Restrictions

— Bandwidth in a fixed interval: u, € [a, b]
— Multiplicatively changing bandwidth

D — Changes with bursts
l Discrete Event Systems
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Bandwidth in a Fixed Interval: Deterministic Algorithm

O
* Preconditions
— adversary chooses u, < [a, b]
— algorithm is aware of the upper bound b and the lower bound a

* Deterministic Algorithm
— If the algorithm plays x, > a in round t, then the adversary plays u, = a.
2> gain=0
— Therefore the algorithm must play x, = a in each round in order to have
at least gain = a.
— The adversary knows this, and will therefore play u, = b.
— Therefore, gain,, = a, gain,, = b, competitive ratio ¢ = b/a.
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Bandwidth in a Fixed Interval: Randomized Algorithm

+ Let’s try the ski rental trick!
— For all possible inputs u € [a, b] we want the same competitive ratio:
c gainAIg(u) = gainopt(u) =u

* Randomized Algorithm

— We choose x = a with probability p,, and any value in x € (a, b] with
probability density function p(x), with pa + f” p()de = 1.

* Theorems
— There is an algorithm that is c-competitive, with ¢ = 1 + In(b/a).

— There is no randomized algorithm which is better than c-competitive,
with ¢ = 1 + In(b/a).

* Remark
— Upper and lower bound are tight.
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Multiplicatively Changing Bandwidth

o e}
* Preconditions
— adversary chooses u,,, such that u/u < u,,, < p u, withp=1, e.g. 1.05
— algorithm knows u, and p

Algorithm A,
— after a successful transmission in period t, the algorithm chooses x,,, = p X,
— otherwise: x,,, = x/u3

+ Theorem

— The algorithm A, is (u* + p)-competitive

Algorithm A,
— after a successful transmission in period t, the algorithm chooses x,,, = p
— otherwise: x,,, = X/2

Theorem
— The algorithm A, is (4p)-competitive
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Changes with Bursts

* Bursty Adversary

— 2 parameters: p = 1 and maximum burst factor B = 1
Uy

— adversary chooses u,,, from the interval [T;; ug - 3y - g
| 3 .

. Lo .

where /3 = min{ B, :3;,[’{—} is the burst factor at time t and
Cr1

where ¢, , = u/u, if u, > u., and u,,/u, otherwise

L

Wt = g
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