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The time-complexity of deterministic and randomized protocols for achieving broadcast 
(distributing a message from a source to all other nodes) in arbitrary multi-hop radio 
networks is investigated. In many such networks, communication takes place in synchronous 
time-slots. A processor receives a message at a certain time-slot if exactly one of its neighbors 
transmits at that time-slot. We assume no collision-detection mechanism; i.e., it is not always 
possible to distinguish the case where no neighbor transmits from the case where several 
neighbors transmit simultaneously. We present a randomized protocol that achieves broadcast 
in time which is optimal up to a logarithmic factor. In particular, with probability 1 --E, the 
protocol achieves broadcast within O((D + log n/s) ‘log n) time-slots, where n is the number 
of processors in the network and D its diameter. On the other hand, we prove a linear lower 
bound on the deterministic time-complexity of broadcast in this model. Namely, we show that 
any deterministic broadcast protocol requires 8(n) time-slots, even if the network has 
diameter 3, and n is known to all processors. These two results demonstrate an exponential 
gap in complexity between randomization and determinism. l i ‘ 1992 Academic press, IX 

1. INTRODUCTION 

Channels in computer networks are commonly partitioned into two categories: 
point-to-point channels (also known as store-and-forward) and multi-access 
channels. These categories are very different in nature and each has advantages 
and disadvantages making it more suitable to various applications [T81]. The 
fundamental feature of multi-access channels is that a message placed on the 
channel is delivered to all stations sharing the channel if and onfy if it is the only 
message placed on the channel at “that time.” If two (or more) messages are placed 
on the channel (by different stations) at the same time, a collision occurs and none 
of these messages is delivered. Most works assume that such collision can be 
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detected yet this assumption cannot always be justified (cf. [GSS]). In particular, 
in radio channels, which constitute an important type of multi-access channels, 
collision is hard to distinguish from the noise that is always present on the channel 
(cf. [GUI). Furthermore, also in settings where collision is normally detected, it is 
desirable not to rely on the collision detection mechanism: a communication 
protocol which does not use collision detection is likely to be more reliable than 
one which does use it, since the protocol will not fail in case of undetected collision. 

Here we consider multi-access channels without collision detection. As radio 
transmission constitutes the most popular example of such channels, we carry on 
our discussion using the terminology of radio networks. In this terminology a single 
channel is a single-hop radio network [A70], whereas a network consisting of 
several different channels is a multi-hop radio network. 

A useful (and sometimes unavoidable) paradigm of radio communication is the 
structuring of communication into time-slots. This paradigm is commonly adopted 
in the practical design of protocols and hence the use of the paradigm in the 
theoretical analysis of radio communication is justified [R72] (cf. [GM, Sect. 1V.A; 
T81, Sect. 6.1.21). 

We now present explicitly the model used throughout the paper. The model 
consists of an arbitrary multi-hop (undirected) network, with processors communi- 
cating in synchronous time-slots subject to the following rules. In each time-slot, 
each processor acts either as a transmitter or as a receiver. A processor acting as a 
receiver is said to receive a message in time-slot t if exactly one of its neighbors 
transmits in time-slot t. The message received is the one transmitted. If more than 
one neighbor transmits in that time-slot, we say that a conflict has occurred. We 
assume that conflicts (or “collisions”) are not detected, hence a processor cannot 
distinguish the case in which no neighbor transmits from the case in which more 
than one of its neighbors transmits during that time-slot. The topology of the entire 
network is not a priori known to the processors. Since communication is syn- 
chronous the main difficulty in routing messages, in this model, is the possibility of 
conflicts; that is, situations when several neighbors of a processor transmit 
simultaneously and (as a result) it receives nothing. This difficulty is aggravated 
when the processors have no a priori knowledge of the topology of the entire 
network. 

We investigate the complexity of implementing broadcast in the above model. 
Broadcast is a task initiated by a single processor, called the source, transmitting a 
single message.’ The goal is to have the message reach all processors in the 
network. We consider both deterministic and randomized protocols for broadcast 

’ There is some confusion regarding the term broadcast. In particular, some authors use broadcast to 
mean the task of distributing (many) messages to all processors in a network. A first step in the design 
of broadcast protocols is the design of protocols which handle correctly the broadcast of a single 
message (and indeed out paper which handles the single-message broadcast was followed by [BII89] 
in which broadcasting an arbitrary number of messages was investigated). In the rest of this paper, 
broadcast will mean the simpler task of single-message broadcast. This convention is an accordance with 
a significant number of papers. 
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and concentrate on their time-complexity (i.e., the number of time-slots required to 
complete broadcast). Our results demonstrate the advantage of using randomiza- 
tion in the above model. 

1.1. Randomized Protocols 

We show how conflicts, arising in broadcast protocols, can be resolved 
quickly by using randomization. In particular, we present a randomized broadcast 
protocol that always terminates and, with probability 2 1 -a, succeeds after 
0( (D + log n/E) . log n) time-slots, where D is the network’s diameter (distance 
between its most distant processors) and n the number of processors. Thus, the 
complexity is only a logarithmic factor away from the trivial lower bound (i.e., the 
diameter of the network). The only inputs required by our protocol are the number 
of processors in the network, n, and the error bound, E. 

Our protocol performs almost as well when given instead of the actual number 
of processors (i.e., n) a “good” upper bound on this number (denoted N). An upper 
bound polynomial in n yields the same time-complexity, up to a constant factor 
(since complexity is logarithmic in N). 

Our protocol does not use processor IDS, and thus does not require that the 
processors have distinct IDS (or that they know the identities of their neighbors). 
Furthermore, a processor is not even required to know the number of its neighbors. 
This property makes our protocol adaptive to changes in topology which occur 
throughout the execution, and resilient to non-malicious faults. 

The protocol is conceptually simple, and requires a minor amount of local com- 
putation. All that is needed is to toss one coin and to increment a counter, at each 
time-slot. 

The basic idea used in the protocol is to resolve potential conflicts by randomly 
eliminating half of the transmitters. This process of “cutting by half” is repeated 
each time-slot with the hope that there will exist a time-slot with a single active 
transmitter. The “cutting by half” process is easily implemented distributedly by 
letting each processor decide randomly whether to eliminate itself. 

1.2. Deterministic Lower Bound 

No deterministic protocol can achieve broadcast in radio networks when 
processors do not have unique IDS. To see why, consider the case where the 
networks consists of n processors arranged so that the source is connected to two 
nodes of an (n - 1)-clique. With no IDS, the conflict between these two nodes 
cannot be resolved deterministically. Thus, the (above mentioned) use of random- 
ness “beats” an impossibility result. 

A more reasonable model is one where the processors have unique IDS. The 
impossibility result does not hold in this case, as broadcast can be achieved (e.g., 
by a DFS-like procedure). However, we show that in this model (of distinct IDS) 
the use of randomization allows a dramatic improvement. In this case, the improve- 
ment is in complexity. We show a lower bound of Q(n) for the number of time-slots 
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in a deterministic broadcast protocol running on a network of diameter 3. This 
should be contrasted with the number of time-slots of the randomized protocol on 
such networks, which is O(log n/s) (terminating with probability 1 -E). 

1.3. Related Work 
In this work we consider “collision resolution” in (multi-hop) radio networks 

without collision detection mechanisms. By “collision resolution” we mean guaran- 
teeing the receipt of an arbitrary message sent by one of the processors wishing to 
deliver a message at this stage. A seemingly related problem which has received 
much attention in the late 1970s and early 1980s is that of “collision resolution” in 
(single-hop) radio networks (also known as multi-access channels) with collision 
detection mechanisms (e.g., [C79, H78, TM79, GL83, GW85]). In these works, 
however, “collision resolution” means guaranteeing the receipt of all messages sent 
by processors wishing to deliver a message at this stage. 

Gaps between the power of determinism and randomization are quite common 
in distributed computing. In the context of radio networks (with collision detection 
mechanisms) randomization is used in practice to resolve conflicts (cf. [A70, T81]). 
The key role of randomization in that context was demonstrated in [GWSS] that 
contrasted with (for example) [GL83] yields a gap between the power of deter- 
minism and randomization. The gap is essentially a multiplicative factor which 
is logarithmic in the number of processors sharing the channel. The gap we 
demonstrate is between the power of determinism and randomization in the context 
of radio communication without collision detection mechanisms. We show that the 
time required by deterministic procedures is exponential in the time required by 
randomized ones. 

Our lower bound argument introduces a combinatorial game which seems 
similar to “group testing,” a problem that has been used in the context of multi- 
access channels (cf. [WSS]). However, to the best of our knowledge, research on 
group testing concentrates on monotone feedback functions and the average cost 
with respect to specific instance distribution. 

Our protocol can be thought of as consisting of a distributed algorithm for 
finding a broadcast schedule (i.e., an assignment of processors to be transmitters 
and receivers in specified time-slots) and a trivial protocol using the schedule. 
It is thus interesting to contrast our results with the results known for the time 
complexity of centralized algorithms for finding broadcast schedules. Chlamtac and 
Kutten [CKSS] showed that, given a network and a designated source, finding an 
optimal broadcast schedule (i.e., a schedule which uses the minimum number of 
time-slots) is NP-hard. Chlamtac and Weinstein [CW87] presented a polynomial- 
time (centralized) algorithm for constructing a broadcast schedule which uses 
O(D log* n) time-slots. This centralized algorithm can be implemented in a 
distributed system assuming the availability of special control channels, but the 
number of control messages sent may be quadratic in the number of nodes of the 
network [ W87]. 

571/45/l-8 
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Finally, it is interesting to note that Bar-Yehuda, Israeli, and Itai, building on the 
ideas presented in our protocol, have developed efficient protocols for broadcasting 
multiple messages and point-to-point routing of messages in multi-hop radio 
networks [BII89]. 

1.4. Organization 

In Section 2 we present our randomized broadcast protocol. In Section 3 we 
prove a linear lower bound on the deterministic time complexity of broadcast. Our 
conclusions appear in Section 4. 

2. RANDOMIZED PROTOCOLS 

Throughout this section, n denotes the actual number of processors in the 
network, N denotes an a priori known upper bound on n, and d an a priori known 
upper bound on the maximum degree in the network (both bounds are a priori 
known to the source). 

The basis for all our protocols is a randomized procedure, called Decay, which 
resolves conflicts among the transmitting neighbors of a receiver by randomly 
eliminating half of them at each time-slot. 

2.1. The Basic Transmission Protocol-Decay 

The intuition behind the Decay procedure is as follows: A processor receives a 
message in a certain time-slot if and only if exactly one of its neighbors acts as a 
transmitter during this time-slot. Thus, in order to guarantee that a message is 
received, one must coordinate the neighbors so that exactly one of them transmits. 
As we will see in Section 3, coordinating neighbors by deterministic means is highly 
inefficient, since the “coordination channels” are subject to exactly the same dif- 
ficulties. Thus, we abandon the desire of achieving deterministic coordination, and 
turn for help to randomization procedures. Suppose d 6 A processors compete for 
a time-slot in which exactly one of them sends a message. Simultaneously, they all 
start a game of coin flips. At each time-slot, on the average half of the remaining 
processors remove their candidacy. We show that, with constant probability, before 
all processors remove their candidacy there exists a time-slot with exactly one 
candidate. 

We now present a precise description of the procedure as executed by each 
processor. In this description k is a parameter and m is the message to be sent. 

procedure Decay(k, m); 
repeat at most k times (but at least once!) 

send m to all neighbors; 
set coin c 0 or 1 with equal probability. 

until coin = 0. 

By using elementary probabilistic arguments, we get 
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THEOREM 1. Let y be a vertex of G. Also let d > 2 neighbors of y execute Decay 
during the time interval [0, k) and let them all start the execution at Time = 0. Then 
P(k, d), the probability that y receives a message by Time = k, satisfies 

(i) lim,, ~ P(k, d) 2 f; 

(ii) for k > 2. rlog dl, P(k, d) > &. 

CONVENTION. Throughout the paper all logarithms are to base 2. 

Proof Clearly, for fixed d, P(k, d) is a nondecreasing function of k; since it is 
also bounded by 1, it converges. Let P(cq d) denote that limit. 

(i) Clearly, P( co, 0) = 0 and P( co, 1) = 1. Also for each d 3 2, we get the 
recurrence 

2-dP( co, i). (1) 

We proceed by induction on d > 2. 

Induction Basis: By (1) 

P( 00,2) = 2.(1/4) =2/3. 
1 -(l/4) 

Induction Step: Let d > 2, and assume that P( 00, i) > 3, for all i < d. By (1 ), 
we get 

P(c0, d).(2d- l)= 

By the induction hypothesis and P( co, 1) = 1, 

P(co,d)(2d-l)>1 .(f)+;;$ (3+‘d-l) Cd>21 

and (i) follows. 

(ii) Case d< 5. By inspection. 

Case d 2 6. Consider runs of the procedure Decay without a time bound 
(i.e., k = co). Let T,,d be a Boolean random variable assigned True if and only if all 
the neighbors of y terminate by time t; and R, be a Boolean random variable 
assigned True if and only if y received a message at finite time. Then 
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W, 4 > Pr(& A Tk,d 

= 1 - Pr(R,) - Pr( Tk,d) 

>P(co,d)-d.2pk 

> 3-&d-= [by (i) and k 2 2 log d] 
I 27 Cbyd261 I 

The expected time until termination depends on the probability that coin = 0. 
Here, this probability is set to be one half. An analysis of the merits of using other 
probabilities was carried out by Hofri [H87]. 

2.2. The Broadcast Protocol 

The broadcast protocol makes several calls to Decay(k, m). In order to obtain 
the desired probability of Theorem l(ii), the parameter k should be at least 2 log d, 
where d is the number of neighbors sending a message to a node. Since d is not 
known, we choose k = 2rlog Al (recall that A was defined to be an upper bound 
on the indegree). Theorem 1 also requires that all participants start executing Decay 
at the same time-slot. Therefore, we start Decay only at integer multiples of 
2rlog Al (i.e., we synchronize the initialization of the various versions of Decay). 

procedure Broadcast ; 
k := 2rlog Al; 
t := riog(N/&)l; 
Wait until receiving a message, say m ; 
do t times 

Wait until (Time mod k) = 0; 
Decay(k, m); 

od 

A network is said to execute the Broadcast-scheme if some processor, denoted s, 
transmits an initial message and each processor executes the above Broadcast pro- 
cedure.= The following lemma demonstrates the effectiveness of Broadcast-scheme, 
albeit in a crude way. It states that, with very high probability, the communication 
activity in the network does not die out before all processors receive the message. 

LEMMA 2. If a network executes Broadcast-scheme then 

Pr( All nodes receive m) B 1 - E. 

*We distinguish between Broadcast, which is a program to be executed by each processor, and the 
Broadcast-scheme, which is a distributed protocol augmented by an initialization assumption (namely 
that a single processor initiates the execution of the protocol by sending a single message). 
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Proof 

Pr(not all nodes received the message m) 

= Pr(3v # s such that v did not receive m and one of v’s neighbors received m) 

< 1 Pr(v did not receive m and one of v’s neighbors received m) 
V#S 

< 1 Pr(v did not receive m 1 one of v’s neighbors received m) 
V#S 

G n . (~)rbdw)i <n.(&/N)<E. 1 

The above lemma bounds from below the probability that broadcast is successful 
in the network, but does not implicitly address the question of when this happens 
(i.e., after how many time-slots). An obvious upper bound of O(Dk -log(n/&)) can 
be obtained from the proof of the lemma. A much sharper bound on the number 
of time-slots required for broadcast is given by Lemma 3 below. 

Notation. For 0 <E < 1, let 

and T(E) = 2 .D + 5M(e) .Max(@, M(E)). 

We abbreviate M(E) by M and T(E) by T. 

(2) 

LEMMA 3. Consider an execution of a modtfied Broadcast-scheme in which the 
main loop is not timed-out after [log(N/e)J repetitions, but rather is executed 
indefinitely (starting at Time = 0). Then for all 0 < E 6 1, the following hold: 

(i) Let T, be a random variable denoting the time by which processor v 
receives the message m. Then Vv E V, 

Pr( T, > 2rlog d 1. T(E)) < t. 

(ii) Let T,, = max, T,. Then 

The bound provided by Lemma 3 contains two additive terms: the first represents 
the diameter of the network and the second represents delays caused by conflicts 
(which are rare yet exist). 

Proof: Following is a sketch of the proof of Part (i), from which Part (ii) easily 
follows. Consider a node v E V. Let the random variable Disti be the length of a 
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shortest path from the set of nodes which have received the message m at phase i 
to v (each phase takes 2rlog A] time-slots). Since at Time = 0 the source has m, 

Dist, Q D. (3) 

From (ii) of Theorem 1 we get 

Pr(Dist, - Disti+ 1 = 1 ) Disti # 0) 2 4 (4) 

Now, Pr(Dist,,,, >O) is the probability that v has not received the message m by 
time T(E). 2rlog Al. On the other hand, 

( 

T(E)- I 
Pr(Dist T(Ej > 0) = Pr iT0 (Disti- Dist,, r) < Dist, 

> 
T(E)- 1 

[by (3)] 

Define a O-l random variable xi = Disti - Disti+ r. By (4), Pr(Xi = 1) 2 f. Thus, the 
above expression corresponds to the probability that the sum of such T(E) variables 
does not exceed D. Using the Chernoff bound [ES74, p. 181 this probability is 

<exp( -(l-g)‘.?) 

Max{D, M2} 

20+5M.Max{fi,M} 
[substitute for T] 

E 
=- 

N’ 
[substitute for M] 

This concludes the proof of (i). I 

Combining Lemmas 2 and 3, we get 

THEOREM 4. Let T= 20 + 5 max{ ,,6, Jiog(NIE)} . Jiog(NIE). Assume that 
Broadcast-scheme starts at Time =O; then, with probability 2 1 - 2E, by time 
2rlog Al . T all nodes received the message. Furthermore, with probability 2 1 - 2~, 
all the nodes have terminated by time 2rlog A]. (T + rlog(N/s)]). 

Remark. Theorem 4 remains valid also in the case that Broadcast is initiated by 
a non-empty set of processors at the same time (i.e., Time = 0) with the same initial 
message. Namely, redefine Broadcast-scheme so that at Time = 0 a non-empty sub- 
set of the processors have received (“from an external source”) copies of the same 



THE COMPLEXITY OF RADIO BROADCAST 113 

initial message. Then, with probability 2 1 - 2.5, all the processors have received a 
copy of the initial message and terminated by time 2( T+ rlog(N/s)l) .logrdl. In 
case Broadcast-scheme is initiated by a subset of the processors having arbitrary 
(i.e., not necessarily identical) messages then, with high probability, each processor 
terminates getting at least one of these messages. 

Additional Properties of Our Broadcast Protocol. 

(1) Simplicity and Fast Local Computation-In each time slot each processor 
does a constant amount of local computation. 

(2) Message Complexity-Each processor is active for rlog(N/c)l con- 
secutive phases, and the average number of transmissions per phase is ~2. Thus the 
expected number of transmissions is bounded by 2n. rlog(N/a)l. 

(3) Adaptiveness to Changing Topology and Fault Resilience-Our protocol is 
resilient to some changes in the topology of the network. For example, edges may 
be added or deleted at any time, provided that the network of unchanged edges 
remains connected. This corresponds to fail/stop failure of edges, thus demon- 
strating the resilence to some non-malicious failures. 

(4) Directed Networks-Our protocol does no use acknowledgements. Thus 
it may be applied even when the communication links are not symmetric, i.e., the 
fact that processor v can transmit to u does not imply that u can transmit to v. (The 
appropriate network model is, therefore, a directed graph.) In real life this situation 
occurs, for instance, when v has a stronger transmitter than U. 

2.3. Other Applications of Decay 

We first describe an application of Decay to Breadth First Search (BFS) defined 
as follows: given a root r, mark all nodes v by integer dist(r, v) denoting the dis- 
tance from r to v. BFS can be used for the construction of shortest (i.e., “minimum 
hop”) routing paths in the network. 

Before presenting our BFS algorithm, let us note that the paths induced by the 
Broadcast-scheme presented above are unlikely to form a BFS tree. This fact is a 
consequence of the independence of the randomized events corresponding to a suc- 
cessful receipt of a message at various processors neighbouring the same transmitter 
(or transmitters of equal distance from s). In fact, though the expected phase num- 
ber in which a processor receives the message sent by s equals twice the distance 
between the processor and s, the variance in the value of this random variable is 
non-negligible. We overcome the difliculty by “slowing down” so as to force it to 
progress “layer by layer.” We define each phase to be of length rlog(N/s)l times the 
duration of Decay. (I.e., each phase takes 2rlog dlrlog(N/s)l time slots.) The 
distance from r is equal to the number of phases from the start until the message 
was first received. This can be done simply by having r send the start time along 
with the message. Thus, without loss of generality, we can assume that the protocol 
started at Time = 0. 
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procedure BFS, ; 
k := 2rlog Al; 
Wait until receiving a message, say m ; 
Distance y := LTime/(krlog(N/&)1_1; 
Wait until (Time mod k . rlog(N/e)]) = 0; 
do rlog(N/s)] times 

Wait until (Time mod k) = 0; 
Decay(k, m); 

od 

If r starts the algorithm at Time = 0 and the only transmissions in the network are 
those of procedure BFS then 

Pr(Vv E V Distance, = dist(r, v)) B 1 - E. 

The proof is identical to that of Lemma 2. The number of consecutive time slots 
required by the BFS algorithm is 2Drlog Alrlog(N/&)1. 

In the preliminary version of this paper [BGI87], we stated an application of our 
broadcast scheme to achieve leader election in arbitrary multi-hop radio networks. 
That protocol can be viewed as an emulation of Willard’s protocol, for electing a 
leader in a singlehop radio network with collision detection [W86], on an arbitrary 
multi-hop radio network without collision detection. This emulation is in fact 
independent of the specific protocol and has appeared in [BGI89]. 

Finally, we note that Decay plays a central role in the efficient protocols, for 
broadcast and point-to-point routing of messages in multi-hop radio networks, 
presented in [BII89]. 

3. A DETERMINISTIC LOWER BOUND 

Before presenting our lower bound, we formally present the problem of broadcast 
in radio networks. 

DEFINITION 1 (Broadcast Protocols). A broadcast protocol for radio networks is 
a multiprocessor protocol the execution of which proceeds in time-slots (numbered 
0, 1, 2, . ..) as follows. 

(1) In the initial time-slot, referred to as time-slot 0, a specific processor, 
called the source, transmits a message, called the initial message (or the message). 

(2) In each time-slot, including time-slot 0, each processor either acts as a 
transmitter or acts as a receiver or is inactive. 

(3) A processor receives a message in a specific time-slot if and only if it acts 
as a receiver in this time-slot and exactly one of its neighbors acts as a transmitter 
in that time-slot. (The message received in this case is the message transmitted by 
that neighbor.) 
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(4) The action of a processor in a specific time-slot is determined as a func- 
tion of its initial input (which consists of its own ID and the IDS of its neighbors), 
and the (sequence of) messages that it has received in previous time-slots. Thus, 
without loss of generality, all processors have identical copies of the same program. 

(5) A processor may act as a transmitter in a time-slot only if it has received 
a message in some previous time-slot (i.e., there are no “spontaneous” actions). (As 
we will see in Subsection 3.5, this condition can be omitted). 

(6) The broadcast is completed at time-slot t, if all processors have received 
the initial message at one of the time-slots 0, 1, . . . . t. 

A broadcast protocol 17 for radio networks is correct for the class of networks C 
if for every G( V, E) E C and any assignment of IDS, 4, to the nodes of G there exists 
an integer t such that 17 completes broadcast at time-slot t when executed in the 
graph G with the ID assignment 4. 

In our lower bound argument, we consider an arbitrary deterministic broadcast 
protocol and its executions on members of a particular class of networks denoted 
C,. Clearly, the lower bound holds for protocols running on any class of networks 
containing C,. All networks in C, have exactly n + 2 processors, and thus we can 
think that the protocol gets the number of processors as input. 

3.1. The Networks Used in Our Argument 

A (generic) member of C, will be denoted as G,, where S is a non-empty subset 
of { 1, 2, . ..) n}. The processors in this network have IDS denoted 0 through n + 1, 
and are associated with nodes 0 through n + 1. The structure of the network GS 
constitutes a graph with vertex-set (0, 1,2, . . . . n + 1 } and edge-set E, u E,, where 

E,=((O,i):lbi<n} 

E,={(i,n+l):i~S). 

The nodes are organized in three layers. The first layer consists of node 0, called the 
source. The second layer contains nodes 1 through n; these nodes will be the 
receivers of the initial transmission. The third layer consists of the last node n + 1, 
which is adjacent to the nodes in S (see Fig. 1). The problem of broadcast, in 
networks of C,, thus reduces to reaching the node of the third layer, called the sink. 

FIGURE 1 
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The difficulty stems from the fact that the partition of the second layer (i.e., S) is 
not known a priori. 

3.2. Reduction to a Combinatorial Game 

In this subsection we reduce the problem of broadcast to a simple combinatorial 
game, called the hitting game. The reduction is in three stages. In the first two stages 
we simplify the problem by restricting and strengthening broadcast protocols in a 
manner which does not effect the lower bound, while in the third stage an abstract 
broadcast problem is reformulated as a hitting game. 

We first (slightly) restrict the broadcast protocol operating on the networks of 
the class C,. This restriction does not change the asymptotic complexity of broad- 
cast in C,. 

DEFINITION 2 (restricted broadcast protocols): A broadcast protocol 17 for the 
class C, is called restricted if, for every graph G, E C, and every time-slot i, in the 
ith time-slot of the execution of I7 on GS either the source is active or the sink is 
active, but not both. 

LEMMA 5. If there is a broadcast protocol which terminates within t time-slots 
on every network in C,, then there exists a restricted broadcast protocol which 
terminates within 2t time-slots on every network in C,. 

The proof is given in Appendix Al. 
To further simplify the analysis, we consider only time-slots in which either the 

source or the sink acts as a receiver. The effect of the other time-slots will be 
achieved by assuming that all processors of the second layer have gained knowledge 
of each transmission received by the source or sink immediately after it has 
occurred. This and other simplifying assumption are present in the following 
abstract communication model which certainly is not intended to be a real model 
of radio communication. Nevertheless, we will show that the complexity of broad- 
cast in the model of Definition 2 is bounded below by the complexity of broadcast 
in the abstract model. Before describing the abstract model we present the following 
concept which relates to processors in a network G, E C,. 

DEFINITION 3. The S-indicator (the indicator) of a second layer processor 
PC (1, 2, . . . . n}, denoted x,“, is a bit which equals 1 if and only if p E S. 

DEFINITION 4 (abstract broadcast protocols): An abstract broadcast protocol 
for C, is a multi-processor protocol which proceeds in rounds (numbered 1,2, . ..) 
as follows. 

(1) In each round, only processors of the second layer may act as trans- 
mitters, and either the source or the sink (but not both) may act as receivers. All 
messages sent consist merely of the transmitter’s ID and its S-indicator. That is, 
each message transmitted by processor p consists of the pair (p, x,“). 
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(2) A processor (sink or source) receives a message in a specific round if and 
only if it acts as a receiver in this round and exactly one of its neighbors acts as 
a transmitter in that round. A round is called successful if the processor acting as 
a receiver (i.e., either the source or the sink) has received a message. 

(3) At the end of the round, all processors of the second layer know whether 
the round has been successful. Furthermore, in case the round was successful these 
processor know the contents of the message which was received. 

(4) The action of a processor in a specific round is determined as a function 
of its initial input (which consists of its own ID and the IDS of its neighbors), and 
the sequence of pairs (t, M), where t is a previous successful round and M is the 
message received in that round. 

(5) The broadcast is completed once the processor indicator in the message 
received in a successful round equals 1. (I.e., the broadcast is completed in the first 
round in which a message sent by a processor in S is received.) 

It follows that the processor indicator in the messages in all successful rounds 
preceding the last one is 0. 

LEMMA 6. If there is a restricted broadcast protocol which terminates within t 
time-slots on every network in C,, then there exists an abstract broadcast protocol 
which terminates within t rounds on every network in C,. 

The proof is given in Appendix A.2. 

Notation. Let s denote the set (1, 2, . . . . n} - S. 

Let us now take a closer look at the execution of the abstract protocol 17. Let 
Hi_, be the common knowledge of the history rounds 1 through i- 1. This history 
consists of the sequence of successful rounds and the corresponding successful 
transmitters. Namely Hip, = P,, P,, . . . . Pi- ,, where P, is a special symbol (say 
- 1) in case round k is not successful, and otherwise Pk is the ID of the processor 
the message of which is received in round k. 

Processor p E { 1, 2, . . . . n} decides whether to transmit in round i as a function of 
its initial input (which in turn is determined by its ID, p, and its S-indicator xi) 
and the history H, _ i Let us denote this predicate by n; namely, the p th processor 
acts as transmitter in round i if and only if 7c(p, x”, Hip 1) = 1. Without loss of 
generality, n: { 1, 2, . . . . n} x (0, 1) x { - 1, 1,2, . . . . n}* + (0, 1). 

The set of transmitters in round i is denoted by T;. The following equalities are 
easily verified: 
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Let Tj”‘= {p: n(p, 0, Hi-i)= l}, for CE (0, 11. Then 

Ti=(TI1’nS)u(Tj:O’nS). 

Recall that round i is successful if and only if 1 T, n SI = 1. In formulating the 
following combinatorial game, which captures the structure of abstract broadcast 
protocols, we will use a relaxed condition. 

DEFINITION 5 (The nth hitting game). The nth hitting game is a combinatorial 
game played by two parties, called the explorer and the referee. The game is played 
on a non-empty set SE { 1, 2, . . . . n}, known only to the referee. The explorer’s task 
is to “hit” an element of S. The game proceeds in moves. In the ith move the 
explorer, based on the consequence of his previous moves, specifies a set Mi. If 
Mj n S is a singleton then the referee reveals it to the explorer, and the game is ter- 
minated. If Mi n S is a singleton then the referee reveals it to the explorer without 
terminating the game. Otherwise (i.e., both Mi n S and M, n S are not singletons) 
the referee says “bad luck.” We stress that the actions of the referee are completely 
determined by the explorer’s moves and the set S. We say that the explorer won the 
game in t moves if the game was terminated at the tth move (when the referee 
handed an element of S to the explorer). We say that the explorer has a t-move 
winning strategy if, no matter what S is, the explorer wins within t moves. 

Remark. An explorer strategy determines each move of the explorer as a 
function of the current history of the game. In fact, it suffices to consider the 
consequences of (i.e., referee’s answer to) the previous moves of the explorer. 

LEMMA 7. If there is an abstract broadcast protocol which terminates within t 
rounds on every network in C,, then there exists a 2t-move winning strategy for the 
n th hitting game. 

The proof is given in Appendix A3. 
Combining Lemma 5, 6, and 7, we get 

PROPOSITION 8. Let T(n) be the deterministic time-complexity of broadcast on 
networks in C,, and let G(n) be the number of steps required to win the nth hitting 
game. Then 

T(n) > a. G(n). 

Remark. A more careful reduction yields T(n) B G(n)/2. The essential ideas 
appear in Appendix A4. 

3.3. A Lower Bound on Hitting Games 
In this subsection we prove a linear lower bound on the number of moves 

required to win the nth hitting game. We do this by presenting an “adversary” pro- 
cedure for determining, for each explorer strategy of n/2 moves, a (non-empty) S 
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which foils this strategy. Furthermore, we show that for every strategy of less than 
n/2 moves there exists a set S such that the referee answers Qr to all non-singleton 
moves. Clearly, the referee answers all singleton moves with the singleton itself, and 
it goes without saying that these moves are not in S. We stress that for such a set 
S, the referee’s answers are determined solely by the explorer’s moves, and thus the 
explorer gains no information from these answers. Hence, the problem of finding 
sets which foil all explorer strategies reduces to the problem of finding sets which 
foil all (“oblivious”) strategies which do not depend on the referee’s answers to the 
previous moves. 

We start by constructing a set S which foils an oblivious strategy (for the 
explorer). An arbitrary oblivious strategy consists of a fixed sequence of moves. 
Given a sequence of t ( <n/2) moves M, , M2, . . . . M, we construct a (non-empty) set 
S that contains no singleton moves and for all non-singleton moves Mi both 
lMi n SI # 1 and I&fin 31 # 1. An equivalent condition is that for all i, the set 
Mi n S is not a singleton and the set Mi n S is a singleton iff Mi is a singleton. 

The construction of the set S proceeds as follows. We start with S= { 1, 2, . . . . n}. 
First we omit all singleton moves from S, and their elements from all other moves. 
New residual moves are created. If any of them is a singleton it is omitted from S 
too (and residual moves are updated again). This process guarantees that no move 
has a singleton intersection with S. Recall that we need also to guarantee that 
except for singleton moves, no other moves have singleton intersection with S. To 

this end, we remove another element from S each time a non-singleton move is 
updated for the first time (guaranteeing that the intersection of this move with S 
has cardinality 22). Following is a formal description of the procedure 

procedure fin&set ; 
input: M,, M,, . . . . M,; 
initialization: S c { 1, 2, . . . . n}; 
while (3 s.t. IMi n Sj = 1) do begin 

let x denote the single element of Mi n S; 
set SC S- {x}; 
while (3js.t. IMjnS) = lMjl - 1 >O) 
do begin 

pick (arbitrary) p E M, n S; 
set St S- {p); 

end; 
end; 
output: s; 

First, we show that if the procedure has output a non-empty S then S is 
consistent with the input moves. Namely, 

LEMMA 9. Let the Mi’s be as in the procedure, and suppose that the procedure 
outputs S. Then, for every i (1 d id t): 
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(1) The set Mi n S is not a singleton. 

(2) M, n s is a singleton if and only if Mi is a singleton. 

Proof: We consider two cases: 

Case 1. Mi n S is empty. Condition (1) holds trivially. To see that condi- 
tion (2) holds note that in this case Mj E S and IMi n SI = lMil follows. 

Case 2. Mjn S is not empty. By the condition of the outer while loop, 
IM, n S[ # 1 and condition (1) holds. Since IM,I > IMi n SI 4 (0, 1 }, condition (2) 
requires showing that IMi n SI # 1. We consider two subcases. 

Subcase 2.1. Mj = M, n S. In this subcase, Mi n S= @ and the claim 
follows. 

Subcase 2.2. M, # Mi n S. In this subcase, 1 < IMi n SI = IMi - (M; n S)(. 
By the condition of the inner while loop, lM,n SI # IM,I - 1 and therefore 
IM,nSI#l. I 

Next, we show that the procedure terminates outputting a non-empty S. Namely, 

LEMMA 10. If t <n/2 then the above procedure outputs S # 0. 

Proof We prove the lemma by considering the decrease in ISI throughout the 
execution of the procedure. Elements are omitted from S in two cases: 

(1) When M, n S becomes a singleton, then during the execution of the outer 
while loop, it is omitted from S. In this case we charge this element to move i. 

(2) When M,n S first decreases, then during the execution of the inner while 
loop, one of its elements is omitted from S. In this case we charge this element to 
move j. 

The above charging rule certainly satisfies the following two claims: 

CZaim 1. Each element omitted from S is charged to some move. (Proof: by 
definition of the charging rule.) 

Claim 2. Each move is charged at most twice. Furthermore, a singleton move 
is charged exactly once and a (non-empty) non-singleton move is charged at most 
twice. (ProoJ: Each move is charged at most once by case (1) and at most once by 
case (2).) 

This gives a bound of 2t on the number of elements omitted (and charged). To get 
a slightly sharper bound note that either there are no singleton moves (and then no 
elements are omitted) or there exists a singleton move (which is of course charged 
exactly once). The total charge is thus at most 2(t - 1) + 1 <n - 1, and thus 
sz0. I 

The lower bound on the hitting game now follows. Given an explorer strategy, 
we consider the moves it induces supposing that all previous non-singleton moves 
were answered 0. Combining Lemmas 9 and 10, we get 
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PROPOSITION 11. Let G(n) be the number of steps required to win the nth hitting 
game. Then 

G(n) 2;. 

3.4. Summary 
Combining Propositions 8 and 11, we get 

THEOREM 12. There exists no deterministic broadcast protocol which terminates 
in less than n/8 time-slots on any network in C,. 

We have proved an Q(n) lower bound on the time-complexity of deterministic 
radio broadcast (on arbitrary networks of n processors). This bound is tight, as it 
is easy to see that one may reach all n processors in a network within 2n time-slots, 
by having the current transmitter “traverse” the network in a Depth-First-Search 
manner. On the other hand, the gap between the deterministic and randomized 
time-complexity of radio broadcast is striking, as we have 

COROLLARY 13. There exists a family of n-processor networks for which the 
(constant-error) randomized time-complexity of radio broadcast is O(log n), whereas 
the deterministic time-complexity is Q(n). 

Proof Consider the family C,-Z defined above. The deterministic lower bound 
is by Theorem 12. Using the protocol of Section 2, for the randomized upper 
bound, the corollary follows. 1 

3.5. Extension to Spontaneous Transmission 
Throughout the entire section we have assumed that, except for the source, no 

processor transmits before receiving a message. If this assumption does not hold 
then there exists a three round broadcast protocol for the network class C,. In 
round 0 the source transmits as usual, in round 1 the sink spontaneously “awakes” 
and transmits the smallest among its neighbors’ IDS, and in round 2 this processor 
transmits and the broadcast is completed. Fortunately, a slightly more complicated 
network class admits a lower bound similar to the one proven in Theorem 12. 

The new network class, denoted C,*, consists of graphs denoted as GS,R, where 
S and R are non-empty subsets of { 1, 2, . . . . n} and {n + 1, n + 2, . . . . 2n), respectively. 
The network consists of 2n + 1 processors having IDS denoted 0 through 2n. The 
structure of the network G,,. constitutes a graph with vertex-set (0, 1,2, . . . . 2n) 
and edge-set E, v E,, where 

E,={(O,i):l<ibn} 

E,=((i,j):i~S,j~Rj. 

As before, the nodes are organized in three layers. Node 0 is called the source, and 
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the nodes R are called the sinks. The problem of broadcast, in C,*, consists of 
reaching all sinks (which is as difficult as reaching one of them!). An alternative 
formulation defines broadcast as completed once a message is received through any 
of the links in E,. The reader can easily verify that the arguments we have used still 
apply with respect to such a transmission being in any of the two possible 
directions. 

4. CONCLUDING REMARKS 

We have shown how conflicts, arising in broadcast protocols, can be resolved 
quickly by using randomization. This point is further pursued in our emulation of 
single-hop radio networks with collision detection on multi-hop radio networks 
without collision detection [BGI89]. 

The exponential gap between the deterministic and randomized complexities 
in this model is believed to be another strong indication of the importance of 
randomization for distributed applications. 

Coflision Defection. Sometimes it is reasonable to assume that a processor can 
detect collisions, i.e., distinguish between the case that zero or more than one 
neighbor transmits. Our randomized protocol achieves almost optimal behavior 
without resorting to collision detection. However, our lower bound on deterministic 
protocols no longer holds. In particular, one can broadcast in C, using 4 time-slots. 
An interesting open problem is to lind matching lower and upper bounds for deter- 
ministic broadcast protocols which use collision detection. 

APPENDICES TO SUBSECTION 3.2 

Appendix A 1: Proof of Lemma 5 
Let n be a broadcast protocol such as in the hypothesis. We construct a 

restricted broadcast protocol, i7’, which simulates 17 as follows. The ith time-slot 
of I7 is simulated by the (2i - 1 )st and (2i) th time-slots of Z7’. In the (2i - 1 )st 
time-slot of i7’, the sink is inactive while all other processors (i.e., the source and 
the processors of the second layer) act as in the ith time-slot of Z7. In the (2i)th 
time-slot of l7’, the source is inactive while all other processors (i.e., the sink and 
the processors of the second layer) act as in the ith time-slot of Z7. After the (2i)th 
time-slot each processor considers the messages it has received in the (2i- 1)st and 
(2i)th time-slots. If it has received messages in both time-slots, the processor 
ignores these messages and records that it has received no messages in simulating 
the ith time-slot. (This may occur only for processors in the set S.) Otherwise, the 
processor records the message (possibly none!) it has received as the message 
received in the simulation of the ith time-slot. Clearly, the message (possibly none) 
recorded by each processor after time-slot 2i equals the message received by the 
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very same processor in the ith time-slot of the execution of 17. Thus, Z7’ completes 
broadcast within 2t time-slots on every network in C,, and the lemma follows. 

Appendix A2: Proof of Lemma 6 

Let I7 be a restricted broadcast protocol such as in the hypothesis. Recall that 
without loss of generality all processors have identical copies of the same local 
program. It folows that, without loss of generality, all messages sent by a processor 
p E ( 1, 2, -.., n} contain only the pair (p, $) and the sequence of all messages 
received by processor p in previous rounds. 

We now construct an abstract broadcast protocol, ZZ’, which simulates the above 
protocol 17. The ith time-slot of 17 is simulated by the ith round of Z7’ as follows. 
The processors of the second layer which are active as transmitters in the ith time- 
slot of 17 are active as transmitters in the ith round of 17’. If either the source or 
the sink is active as receiver in the ith time-slot of Z7 then it is active as receiver 
in the ith round of 17’. In all other cases (a processor of the second layer which 
does not act as transmitter or the sink or source which is not active as receiver) the 
processor is inactive. The messages transmitted contain only the transmitter’s ID 
and indicator and in case of success the transmitter’s ID is immediately known to 
all processors to the second layer. 

We need to verify that the processors of the abstract protocol have the 
knowledge required to simulate the corresponding processors in the restricted 
protocol 17. First note that by the termination condition, the sink does not transmit 
during the execution of Z7, since the sink may transmit only after receiving a 
message (and at this point 17 terminates). Since n must work for all initial 
messages we may consider its execution with some standard message, which may be 
incorporated into the protocol. Thus, there is no need to send the standard message 
and the protocol 17 terminates when some message reaches the sink. Also, the first 
transmission in 17 (i.e., time-slot 0 in which the source transmits) does not add any 
information and may be omitted. Omitting all the other transmissions of the source 
also does not decrease the information available to the processors of the second 
layer. This is the case since after the ith time-slot the source knows only its initial 
input (which is a priori known to all processors) and the list of all previous success- 
ful rounds and the corresponding transmitters (which is known to also to all 
processors of the second layer-by definition of the abstract model). A similar 
argument shows that no information is lost when omitting from the messages of the 
processors of the second layer everything but the ID of the transmitter and its 
indicator. 

The lemma follows by noting that if 27 terminates in the tth time-slot then 17’ 
terminates in the tth round. 

Appendix A3: Proof of Lemma 7 

Let 17 be an abstract broadcast protocol as in the hypothesis, and rc be the 
corresponding predicate determining whether to transmit or not. We construct a 
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2t-move winning strategy for the nth hitting game as follows. The ith round of Z7 
is simulated by the (2i - 1 )st and (2i) th moves of the game. 

For ME { 1, 2, . . . . n}, let refs(M) denotes the referee’s answer to the move M. 
That is, ref.(M) equals M n S if M n S is a singleton, and equals the empty 
set (denoted @) otherwise. The first move of the game consists of the set T\‘) 
(={P:4P,L0)=1}) and the second move consists of the set T’,O’ 
( = { p : rr(p, 0, 0) = 1)). If either set has a singleton intersection with S then the 
game is terminated. Otherwise, let R, +- g(refs( Ti”), refs( T(p))), where g(A, B) 
equalspif{p}=AuBandequals-1if~AuB~#1.Fora~{0,1},the2i-a-th 
move is the set Tf”)= {p: 7c(p, cr, R,-, ) = 1). Note that the explorer can compute 
his moves! If either (the (2i - 1 )st or (2i)th move has a singleton intersection with 
S then the game is terminated. Otherwise, let Rit Rip ,, g(ref,(T\“), refs(T(I’))), 
where g is as above. 

For every i, if the game is not terminated within 2i moves, when played 
according to the above strategy on the set S, then the sequence Ri computed by the 
explorer corresponds to the history sequence Hi in the execution of the protocol 17 
on the graph G,. If the protocol 17 is completed at the ith round, when executed 
on the graph G,, then 1 T, n SI = 1 and furthermore ITj” n S( = 1. It follows that, 
when played according to the above strategy on the set S, the game terminates no 
later than after the (2i- 1)st move. Thus, the above strategy constitutes a 2t - 1 
moves winning strategy for the nth hitting game, and the lemma follows. 

Appendix A4: Essential Ideas for a More Careful Reduction 

This appendix refers to the reduction of the time-complexity of broadcast to the 
hitting game. The reduction presented in Section 3.2 yields T(n) B G(n)/4. A careful 
modification of that reduction yields T(n) > G(n)/2. Following are the essential 
ideas: 

(1) In the restricted broadcast protocol generated by the proof of Lemma 5, 
the source is active only in odd time-slots, while the sink is active only during even 
time-slots. Furthermore, the same processors of the second layer are active in the 
(2i- 1 )st and (2i)th time slots, for every i. 

(2) One can modify the abstract broadcast protocol produced by the proof of 
Lemma 6 so that all processors in S are inactive during each even round, while all 
processors in S are inactive during each odd round. (The first modification is 
obvious since processors in S transmitting during an even round have no effect. For 
the second modification note that if the message sent by a processor in S is received 
by the source in round 2i - 1 then it will be received by the sink in round 2i, and 
therefore cancelling the first transmission only delays termination by 1 round.) 

(3) It follows that T/O’ is empty for even i, while Tj” is empty for odd i. 
Using this fact, Lemma 7 can be strengthened to yield that an abstract broadcast 
protocol which terminates within t rounds on every network in C, implies a t-move 
winning strategy for the nth hitting game. In the proof of the modified lemma, let 
the ith move of the explorer consists of Ti”’ for odd i and Ti” for even i. 
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