
Seminar in Distributed Computing

Task assignment with unknown duration
Thibaut Britz - britzt@student.ethz.ch

2

Overview
● Model
● Performance goals
● Common task assignment policies
● Heavy tails
● Pareto Distribution
● Bounded Pareto Distribution
● TAGS Algorithm
● Results for the case of 2 hosts
● Results for more than 2 hosts
● Effect of the range of task sizes
● Server expansion metric
● Conclusion

3

Model

Model:

● Distributed server system with identical machines
● No cost for dispatching jobs
● Jobs not preemptible
● Service demand not known

4

Performance goals

Goals to achieve:

Primary:
● Minimize mean response time.
● Minimize mean slowdown

slowdown = (waiting time/ service requirement)

Secondary:
● Guarantee fairness

All jobs should experience the same expected slowdown.

(Note: Minimizing the total running time of all the jobs is not a goal)

5

Common task assignment policies

● Random:
h hosts, each job gets assigned to a host with probability 1/h.

● Round robin:
ith job assigned to host i mod h.

● Shortest-queue:
job immediately dispatched to the host with the shortest queue.

6

Common task assignment policies
● Least-work-remaining:

Send the job to the host with the least remaining work.
-> However, we don't know the job size.

● Central-queue:
Keep one global queue and dispatch job to the next free host.
This policy is equal to the least-work-remaining policy and the
optimal solution for exponential job size distribution.

7

● Measurements indicate that the job distribution is not exponential,
but heavy-tailed.

● Heavy tailed distribution: Pr{X > x} ∼ x-α

Heavy tails

8

● Pareto probability mass function approximates heavy-tail property:

f(x) = αx-α-1 x ≥ 1, 0 ≤ α ≤ 2

● The lower α, the more variable the distribution

3 Properties:
● Decreasing failure rate: The longer a job has run, the longer it is

expected to continue running.
● Infinite or near infinite variance
● Heavy tail-property: One tiny fraction of the very largest jobs

comprise more than half of the total load.

Pareto distribution

9

● Empirical results show that job size distributions often have α ≈ 1.
● Upper bound on process size
● We can approximate the distribution of job sizes with the Bounded

Pareto distribution probability density function B(k,p,α):

k ≤ x ≤ p , 0 ≤ α ≤ 2

k: shortest possible job
p: longest possible job
α: variance parameter

Bounded Pareto distribution

10

● Heavy-tail property and decreasing failure rate still valid.
● We will vary α from 0 to 2. E(X) will be fixed to 3000 and p to 1010.

● If workload heavy-tailed, the second moment “explodes”.

E(X2)

Bounded Pareto distribution (ctd.)

11

The TAGS algorithm
h is the number of hosts (numbered 1..h). The ith host has a number si
associated with it, where s1<s2<...<sh

All jobs are immediately dispatched to Host 1 where they are serviced
in FCFS order. If the job hasn't finished after s1 amount of time, it is
canceled, and queued at host 2, where it is restarted from scratch.

12

The TAGS algorithm (ctd.)
3 flavors:
● TAGS-optimize-slowdown
● TAGS-optimize-waitingtime
● TAGS-optimize-fairness

Each one of those has a different cutoff times si. si depends on
the parameters α, k, p and λ (the arrival rate) and optimize the mean
slowdown, waiting time, or fairness.

13

Analytic results for the case of 2 hosts
System load = Outside arrival rate * Mean job size / number of hosts
System load fixed to 0.5

14

Analytic results for the case of 2 hosts (ctd.)

Why does it perform so well?
● Variance reduction
● Load unbalancing instead of load balancing

15

Variance reduction
Variance reduction reduces the variances of job sizes that share the
same queue. This improves performance since it reduces the chance of
a small job getting stuck behind a long job in the same queue.

● Property: For a single FCFS queue, mean queue waiting time,
slowdown and queue length are all proportional to E(X2).

● Random task assignment:
Performance metrics stay proportional to E(X2) of B(k,p,α). Since E(X2)
is high, performance is poor.

● Least-work-remaining (central-queue):
Mean queue length, and therefore mean waiting time and mean
slowdown proportional to E(X2).

● TAGS:
Reduces the variance of job sizes at the individual hosts. Since the
service time of host i is capped at si, E(X2) of each host i is lower than
E(X2) of the original B(k,p,α) distribution. (Except for the last host)

16

Load unbalancing
● TAGS tries to unbalance load.
● All other policies try to balance load.

Observations:
● α < 1: host 1 is underloaded
● α ≈ 1: Load is balanced
● α > 1: host 2 is underloaded

17

Load unbalancing (ctd.)
Why is load balancing favorable for the mean system slow down?

-> Heavy-tail property.

● α < 1: Very small fraction of jobs is needed to make up half the load.
Because of the heavy-tail property, the load at Host 2 will be
extremely high. Since most jobs run at host 1, the mean slowdown is
very low.

● α ≈ 1: Distribution not as heavy tailed. Again we would like to
underload host 1. A larger fraction of jobs must have host 2 as
destination to create high load at host 2. But jobs at host 2 will
impact more on the mean slowdown. This implies higher load at
host 1 to reduce slowdown.

α > 1: No matter how we choose the cutoff s1, a significant number of
jobs will still have host 2 as their destination. So we need to keep
performance of host 2 in check.

18

Load unbalancing (ctd.)
● How does load unbalancing optimize fairness?

● Under TAGS-optimize-fairness, the mean slowdown experienced
by short jobs is equal to the mean slowdown experienced by long
jobs.

● One might think of unfairness on 2 counts:
-short jobs run on host 1 which has very low load (for low α) and very
low E(X2)

 -short jobs don't have to be restarted from scratch and wait on a
second line

However short jobs are short. They don't need much time to complete.
Since we have a heavy-tailed distribution, longer jobs are really longer
(“elephants”) and can afford the longer wait.

19

Different loads
● Still distributed server with 2 hosts, but load varies.

20

Different loads (ctd.)

Observation:
● performance of TAGS correlates with load

2 Reasons:
● The higher the load, the less TAGS can unbalance the jobs.

For lower α's, TAGS can't pile as much work at host 2 and underload
host 1, since the load at host 2 must not exceed 1.

● Excess = Extra work created by restarting jobs from scratch
The excess is the difference between the sum of the loads on the
hosts and h * system load.

21

Analytical results for more than 2 hosts
Observation:
● For 2 hosts, TAGS-optimize-slowdown was good if system load was

0.5 or less.

Claim:
● h host system with a system

load ρ can always be configured
to produce performance which
is at least as good as the best
performance of a 2-host system
with system load ρ.

22

Analytical results for more than 2 hosts (ctd.)

 2 hosts, 0.3 load 4 hosts, 0.3 load
Observations:
● Performance of random stays the same
● Performance of Least-work-remaining improved a little
● Huge improvement in performance for TAGS. Greater flexibility for

choosing cutoff points.

23

Server expansion performance metric
● No one would run a system with slowdown of 105.
● Server expansion metric:

How many new hosts do we have to add to bring the mean
slowdown to a reasonable level (arbitrary set to < 3).

(We start with a 2 host system and system load 0.7)
(example: α= 0.6, 2 hosts -> TAGS: 109 ;4 hosts -> TAGS: 2, LWR: 108 ;13 hosts -> LWR < 3)

24

Server expansion performance metric (ctd.)
Observations:
● For TAGS, the server expansion requirement is at most 3.
● For Least-work-remaining the server expansion ranges from 1 to 27.

Still somehow good since performance increases when hosts are
added.

● Random is exponentially worse than the others.

25

Effect of the range of task sizes
● Previous assumption was to set upper bound to p=1010.
● What if we lower this bound to p=107.

p=1010 p=107

26

Effect of the range of task sizes (ctd.)
● Lower variance might suggest that TAGS improvement won't be so

dramatic over the other assignment policies where p was set to
p=1010

● But still good performance.

 2 hosts, system load 0.5, p=1010 2 hosts, system load 0.5, p=107

27

Conclusion
● Interesting algorithm that challenges natural intuitions (eg load

balancing, killing jobs).
● TAGS is outperforming other policies by several orders of magnitude

if the system load is not too high.
● Normally fairness and performance conflicting goals, here they are

quiet close.
● TAGS outperforms all other policies with respect to the server

expansion metric.
● Raises interesting questions in out of scope fields:

- Scheduling jobs at CPUs
- Area of network routing

