Seminar in Distributed Computing

Task assignment with unknown duration

Thibaut Britz - britzt@student.ethz.ch

Overview

e Model

Performance goals

Common task assignment policies
Heavy tails

Pareto Distribution

Bounded Pareto Distribution

« TAGS Algorithm

Results for the case of 2 hosts
Results for more than 2 hosts
Effect of the range of task sizes
Server expansion metric
 Conclusion

Model

Model:

Distributed server system with identical machines
No cost for dispatching jobs

Jobs not preemptible

Service demand not known

Performance goals

Goals to achieve:

Primary:
 Minimize mean response time.
e Minimize mean slowdown
slowdown = (waiting time/ service requirement)

Secondary:
e Guarantee fairness

All jobs should experience the same expected slowdown.

(Note: Minimizing the total running time of all the jobs is not a goal)

Common task assignment policies

OUTSIDE
ARRIVALS

| DISPATCHER

e Random:

FCFS

FCFS

FCFS

=

FCFS

PHYY

h hosts, each job gets assigned to a host with probability 1/h.

e Round robin:

ith job assigned to host i mod h.

 Shortest-queue:

job immediately dispatched to the host with the shortest queue.

Common task assignment policies

* Least-work-remaining:
Send the job to the host with the least remaining work.
-> However, we don't know the job size.

* Central-queue:
Keep one global queue and dispatch job to the next free host.
This policy is equal to the least-work-remaining policy and the
optimal solution for exponential job size distribution.

OUTSIDE
ARRIVALS

Heavy tails

Distribution of process lifetimes (log plot)
(fraction of processes with duration > T)

1/2

1/4

1/8
116 N
1/32 \
1/64
.
1 2 4 8 16 32 64

Duration (T secs.)

* Measurements indicate that the job distribution is not exponential,
but heavy-tailed.

* Heavy tailed distribution: Pr{X > x} Ox™®

Pareto distribution

* Pareto probability mass function approximates heavy-tail property:
f(x) = ax9- X=1,0<0<2
* The lower a, the more variable the distribution

3 Properties:

» Decreasing failure rate: The longer a job has run, the longer it is
expected to continue running.

* Infinite or near infinite variance

« Heavy tail-property: One tiny fraction of the very largest jobs
comprise more than half of the total load.

Bounded Pareto distribution

* Empirical results show that job size distributions often have a = 1.

« Upper bound on process size
» We can approximate the distribution of job sizes with the Bounded

Pareto distribution probability density function B(k,p,a):

B ak®
1= (k/p)°

—a—1

x k<x<p,0<sO<2

f(z)

k: shortest possible job
p: longest possible job
a: variance parameter

Bounded Pareto distribution (ctd.)

« Heavy-tail property and decreasing failure rate still valid.
* We will vary a from o to 2. E(X) will be fixed to 3000 and p to10™.

* If workload heavy-tailed, the second moment “explodes”.

Second Moment of Bounded Pareto Distribution

10"

10"

10%:

10"

10"

10° |

10° +

10’

The TAGS algorithm

histhe number of hosts (numbered 1..h). The ith host has a number s;
associated with it, where s,<s5,<...<sp,

All jobs are immediately dispatched to Host 1 where they are serviced

in FCFS order. If the job hasn't finished after s, amount of time, itis
canceled, and queued at host 2, where it is restarted from scratch.

)
—)
—)T
=TT
11

OUTSIDE
ARRIVALS

The TAGS algorithm (ctd.)

3 flavors:

» TAGS-optimize-slowdown
 TAGS-optimize-waitingtime
« TAGS-optimize-fairness

Each one of those has a different cutoff times s;. s; depends on

the parameters a, k, pand A (the arrival rate) and optimize the mean
slowdown, waiting time, or fairness.

12

mean slowdown

Analytic results for the case of 2 hosts

System load = Outside arrival rate * Mean job size / number of hosts
System load fixed to 0.5

Results: Mean Slowdown

0 Results: Mean Slowdown
10 T T T T T I T T 1030 - - -
— Random — Random
""" Least-Work-Remaining -+ Least-Work-Remaining
1020 = - TAGS-opt-slowdown | 2 - - TAGS-opt-fairmess

mean slowdown

13

Analytic results for the case of 2 hosts (ctd.)

10

10

mean waiting time

Results: Mean Waiting Time

— Random
oo Least-Work-Remaining

- = TAGS-opt-waitingtime ||

0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2

alpha

Why does it perform so well?
 Variance reduction
 Load unbalancing instead of load balancing

mean waiting time

12

10

Results: Mean Waiting Time

— Random
----- Least-Work-Remaining
- - TAGS-opt-faimess

14

Variance reduction

Variance reduction reduces the variances of job sizes that share the
same queue. This improves performance since it reduces the chance of
a small job getting stuck behind a long job in the same queue.

Property: For a single FCFS queue, mean queue waiting time,

slowdown and queue length are all proportional to E(X?).

Random task assignment:

Performance metrics stay proportional to E(X?) of B(k,p,a). Since E(X?)
is high, performance is poor.

Least-work-remaining (central-queue):

Mean queue length, and therefore mean waiting time and mean

slowdown proportional to E(X?).
TAGS:
Reduces the variance of job sizes at the individual hosts. Since the

service time of host i is capped at s;, E(X?) of each host i is lower than
E(X?) of the original B(k,p,a) distribution. (Except for the last host) 15

Load unbalancing

» TAGS tries to unbalance load.
o All other policies try to balance load.

Loads at hosts under TAGS-opt-slowdown: 2 hosts, load .5

1 - s e e e | ey S T
S — Load at host 1 kN — Load at host 1
0.9F . - - Load at host 2 9F AN - - Loadathost2 ||
. ‘\
A
\ 8t 1
7k
6l
5
4l
3l
ol
1]
0 . L - - 1 L I 0 1 I I . . . | |
0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Loads at hosts under TAGS—opt-waitingtime: 2 hosts, load .5

alpha

TAGS-opt-slowdown

Observations:

alpha

TAGS-opt-waitingtime

° 0 <1 host1isunderloaded
e 0=1:Load is balanced
* 0 >1 host2isunderloaded

Loads at hosts under TAGS-opt—fairness: 2 hosts, load .5

—— Load at host 1
- - loadathost2

~~~~~

TAGS-opt-fairness

16



Load unbalancing (ctd.)

Why is load balancing favorable for the mean system slow down?
-> Heavy-tail property.

* 0 < 1: Very small fraction of jobs is needed to make up half the load.
Because of the heavy-tail property, the load at Host 2 will be

extremely high. Since most jobs run at host 1, the mean slowdown is
very low.

* o =1 Distribution not as heavy tailed. Again we would like to
underload host 1. A larger fraction of jobs must have host 2 as
destination to create high load at host 2. But jobs at host 2 will
impact more on the mean slowdown. This implies higher load at
host 1to reduce slowdown.

a > 1: No matter how we choose the cutoff s1, a significant number of
jobs will still have host 2 as their destination. So we need to keep

performance of host 2 in check. .



Load unbalancing (ctd.)

» How does load unbalancing optimize fairness?

e Under TAGS-optimize-fairness, the mean slowdown experienced
by short jobs is equal to the mean slowdown experienced by long
jobs.

« One might think of unfairness on 2 counts:
-short jobs run on host 1 which has very low load (for low a) and very
low E(X?)
-short jobs don't have to be restarted from scratch and waiton a
second line

However short jobs are short. They don't need much time to complete.
Since we have a heavy-tailed distribution, longer jobs are really longer
(“elephants”) and can afford the longer wait.

18



mean slowdown

Different loads

e Still distributed server with 2 hosts, but load varies.

Results: Mean Slowdown

— Random
oo Least-Work-Remaining
- = TAGS-opt-slowdown

(a) System load 0.3

0.7

0.5F

041

0.3F

0.2r

01r

Loads at hosts under TAGS-opt-slowdown: 2 hosts, load .3

— Load at host 1
Load at host 2
“““ Sum of loads

0.4

mean slowdown

Results: Mean Slowdown

— Random
.+ Least-Work-Remaining
- - TAGS-opt-slowdown

(b) System load 0.5

Loads at hosts under TAGS-opt-slowdown: 2 hosts, load .5

— Load at host 1
- - Load at host 2

 Sum of loads

mean slowdown

Results: Mean Slowdown

— Random
-+ Least-Work-Remaining
- = TAGS-opt-slowdown

04 06 08 1 12 14 1.6 1.8 2

(c¢) System load 0.7

Loads at hosts under TAGS-opt-slowdown: 2 hosts, load .7

— Load at host 1
Load at host 2
v Sum of loads




Different loads (ctd.)

Observation:
« performance of TAGS correlates with load

2 Reasons:
« The higher the load, the less TAGS can unbalance the jobs.

For lower a’'s, TAGS can't pile as much work at host 2 and underload
host 1, since the load at host 2 must not exceed 1.

» Excess = Extra work created by restarting jobs from scratch
The excess is the difference between the sum of the loads on the
hosts and h * system load.

20



Analytical results for more than 2 hosts

Observation:
 For 2 hosts, TAGS-optimize-slowdown was good if system load was

0.5 or less.

Claim: SIIC)

* h host system with a system T e
load p can always be configured — % e
to produce performance which — ARVALs =7 ratoon

is at least as good as the best e
performance of a 2-host system ;‘F

with system load p.

Ill TAGS

SUBSYSTEM

lll@ !

21



Analytical results for more than 2 hosts (ctd.)

mean slowdown

10

Results: Mean Slowdown

— Random
o+ Least-Work-Remaining
- - TAGS-opt-slowdown ||

-l =

alpha
2 hosts, 0.3 load

Observations:
 Performance of random stays the same
» Performance of Least-work-remaining improved a little

« Huge improvement in performance for TAGS. Greater flexibility for

ch

oosing cutoff points.

-5 1 1 L 1 L 1 L 1
0.2 04 06 0.8 1 1.2 1.4 1.6 1.8 2

10%

— Random

o Least-Work-Remaining
e - = TAGS-opt-slowdown ||
10207
1015_
10'°

Results: Mean Slowdown

10'5 L I L L L I L L
02 04 06 0.8 1 1.2 14 1.6 1.8 2

alpha
4 hosts, 0.3 load

22



Server expansion performance metric

* No one would run a system with slowdown of 10°.

e Server expansion metric:
How many new hosts do we have to add to bring the mean
slowdown to a reasonable level (arbitrary set to < 3).

Server expansion requirement a0 Server expansion requirement
30 T T T - 10 T
e Least-Work—Remaining = Rand
= = TAGS-opt-slowdown v Lea
251> i 105
i/ 20
20f 1 107
15
151 10
10
10 f
10p
10°
5 -
> e
..................................... =1 100 i mmm e e e e L i
0 . . ! : ! : - - 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2 alpha

alpha
Log scale
Non-log scale

(We start with a 2 host system and system load 0.7)
(example: o= 0.6, 2 hosts -> TAGS: 10° ;4 hosts -> TAGS: 2, LWR: 10%;13 hosts -> LWR < 3)

23



Server expansion performance metric (ctd.)

Observations:

» For TAGS, the server expansion requirement is at most 3.

 For Least-work-remaining the server expansion ranges from 1to 27.
Still somehow good since performance increases when hosts are

added.
» Random is exponentially worse than the others.

24



Effect of the range of task sizes

* Previous assumption was to set upper bound to p=10".
« What if we lower this bound to p=10".

Second Moment of Bounded Pareto Distribution " Second Moment of Bounded Pareto Distribution

1014 T T T T T T T T 10

0.2 0.4 0.8 0.8 1 1.2 14 1.6 1.8 2 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
alpha alpha

p=10" p=10’ 25



Effect of the range of task sizes (ctd.)

Lower variance might suggest that TAGS improvement won't be so
dramatic over the other assignment policies where p was set to
p=1010

But still good performance.

" Results: Mean Slowdown " Results: Mean Slowdown
10 T T T T T T T T 10 I I I
— Random — Random |
+ Least-Work-Remaining L Least-Work-Remaining
o - - TAGS-opt-slowdown 10 - - TAGS-opt-slowdown ]

mean slowdown
—
o

mean slowdown

2 hosts, system load 0.5, p=10" 2 hosts, system load 0.5, p=10’



Conclusion

* Interesting algorithm that challenges natural intuitions (eg load
balancing, killing jobs).

» TAGS is outperforming other policies by several orders of magnitude
if the system load is not too high.

» Normally fairness and performance conflicting goals, here they are

quiet close.
» TAGS outperforms all other policies with respect to the server

expansion metric.

 Raises interesting questions in out of scope fields:
- Scheduling jobs at CPUs
- Area of network routing

27



