
Decentralized User Authentication
in a Global File System

Max Meisterhans - mmax@student.ethz.ch

Seminar in Distributed Computing WS 05/06

Overview
• Centralized Control
• Self-certifying File System (SFS)
• Goals for the Implementation
• Trust Model/Security
• User Authentication
• Access Control Lists and Authorization
• Implementation
• Evaluation
• Future Work
• Conclusion

Centralized Control

• LAN
Central authorities to coordinate secure collaboration are
reasonable

• Internet
Doesn‘t provide the same administrative structures like in a LAN.

Central Authorities

Centralized Control

• Kerberos
– Based on shared-secret cryptography
– Creating accounts impossible without involving a Kerberos administrator

• AFS combined with Kerberos
– Cross-realm authentication based on Kerberos allows remote users
– Every file server must be enumerated on client machines

Centralized authentication

Centralized Control

• SSL
– Relies too heavily on Certification Authorities (CAs)
– CAs all demand a similarly exacting certification process

• Taos
– Provides a secure distributed computing environment with global

naming and global file access
– User authentication based on CAs, which are issuing certificates which

map a public key to a name
– CAs can be arranged into a tree structure

Certificate-based Systems

Centralized Control

• Hinder deployment
• Stifle innovation
• Complicate cross-administrative realm collaboration
• Exclude valid network resources
• Create single points of failure
• Put everyone at the mercy of the authority

• Certificates allow general forms of delegation, but often require more
infrastructure than is necessary to support a network file system

Central Authorities

• Each SFS file system has a name of the form “/sfs/Location:HostID“
– Location: DNS name of the server
– HostID: cryptographic hash of the server‘s public key

• HostID specifies a unique, verifiable public key with which clients
can establish secure communication channels to servers

• A user runs an SFS client that mounts the SFS under “/sfs“
• Automatic Mounting: When a user references a non-existing

directory, the SFS client tries to contact the machine named by
“Location“. If everything is correct, the client creates the referenced
directory in “/sfs/“ and mounts the remote file system there.

• Given a host on the network, anyone can generate a public key,
determine the corresponding HostID, run the SFS server software,
and immediately reference that server by its self-certifying hostname
on any client in the world.

• Authentication Server provides a user authentication service

SFS – Self-certifying File System

• Key Exchange and Server Authentication

SFS – Self-certifying File System

SFS – Self-certifying File System

• Creating a personal group on the authentication server:

ACL - Example (1)

SFS – Self-certifying File System

• Adding members to a group:

ACL - Example (2)

SFS – Self-certifying File System

• Making a user an owner:

ACL - Example (3)

SFS – Self-certifying File System

• Constructing an ACL and placing it on the directory:

ACL - Example (4)

• Secure, global, decentralized file system permitting easy cross-
administrative realm collaboration

• Uses self-certifying hostnames – a combination of the server‘s DNS
name and a hash of its public key (calculated with SHA-1)

• Provides a global namespace over which no authority has control

• Authentication server provides a generic user authentication service
to other SFS servers

• Can scale to groups with tens of thousands of members

Summary

SFS – Self-certifying File System

Goals
• Allowing people to grant access to specific users and groups in

remote administrative domains

• Provide Access Control Lists (ACLs) that can contain remote
principles

• Authentication server can respond to an authentication request
without contacting any remote authentication servers

• User authentication without requiring certificates

Security / Trust Model
• SFS is a collection of clients and servers that provide several

services:
- a global file system
- remote execution
- user authentication

• communication with Remote Procedure Calls

• each server has its own private key

• clients always explicitly name the servers public key using self-
certifying hostnames

Security / Trust Model
SFS guarantees the following security properties for connections
between SFS clients and servers:

• Confidentiality
A passive attacker, who is able to observe network traffic, can only
accomplish traffic analysis

• Integrity
An active attacker can, at best, only effect a denial of service

• Server Authenticity
The Server must prove its identity. Once a connection has been
established, the client trusts the server who it claims to be

User Authentication

User Authentication
User Authentication is a multi-step operation:

1. The SFS agent signs an authentication request on behalf of the user
with his private key

2. The user sends his request to the file server, which passes it, as
opaque data, on to the local authentication server

3. The authentication server verifies the signature and issues
credentials to the user

4. The authentication server hands these credentials back to the file
server

User Authentication

• Two main functions
– It provides a generic user authentication service to other SFS servers
– It provides an interface for users to manage the authentication name

space

• Named using self-certifying hostnames

• Main challenge: How to retrieve remote user and remote group
definitions

Authentication server

User Authentication

• The authentication server presents an RPC interface which supports
three basic operations:

– LOGIN: allows an SFS server to obtain credentials for a user

– QUERY: allows a user or another authentication server to query the
authentication database

– UPDATE: allows a user to modify records in the authentication
database

Authentication server - Interface

User Authentication
Authentication server – User/group records

User Authentication

Naming users and groups with self-certifying hostnames delegates trust to the
remote authentication server.
This is important because it allows the remote group‘s owners to maintain the
group‘s membership lists, but this implies that the local server must trust those
owners.

Authentication server – Naming users and groups

User Authentication

membership graph for local groups g1 and g2

Resolving group membership

User Authentication

• Credentials that the authentication server issuues may contain a list
of groups, but these groups must be local

• The server resolves each local group into a set of public keys by
fetching all of the remote users that the local group contains

• Consequences:
– Remote principals cannot appear directly on ACLs
– Advantages:

• The authentication server knows which remote users and groups to fetch
• The authentication server fetches only users and groups that are necessary

to issue credentials to a user
• Because no public keys appear in ACLs, there is no need to update them, if

a public key is changed

Resolving group membership

User Authentication

containment graph for local groups g1 and g2

Resolving group membership

User Authentication

• Resolving group membership reduces to the problem of constructing
the containment graph given a set of local groups

• Problems
– Groups can name remote users and groups
– Traversing the containment graph must be efficient
– The containment graph changes

• Addressing the problem by splitting the authentication task into:
– Constructing the graph
– Issuing credentials

Constructing the containment graph

User Authentication

• The authentication server constructs the graph and caches the
records in the background

• The authentication server issues credentials when a user accesses
the file system

• Updating the cache
– Breadth-first traversal
– Cache update cycle every hour

• Cache entries:

Constructing the containment graph

User Authentication

• Optimizations
– Store connections to the remote authentication servers during an

update cycle
– Authentication servers only transfer the changes made since the last

update
– Remote authentication servers can transform user names into their

corresponding public key hashes
• Performance of updating the cache

– Bytes to fetch
– Time to traverse the containment graph

Constructing the containment graph

User Authentication

• Freshness
– The cache update scheme has eventual consistency
– Trade-off between efficiency and freshness

• Revocation
– Problems for users who have their public key hashes on another user‘s

group record or ACL

Constructing the containment graph

User Authentication

• Given the user‘s public key, the authentication server uses its
database to determine the credentials.

• The authentication server supports three credential types:
– Unix credentials
– Public key credentials
– Group list credentials

Credentials

ACLs and Authorization
• Once the user has the credentials, the SFS server can make access

control decisions based on those credentials.
• The file system needs the ability to map symbolic group names to

access rights.
• An ACL is a list of entries that specify what access rights the file

system should grant to a particular user or group of users.
• Four different types of ACL entries:

– User names
– Group names
– Public key hashes
– Anonymous

ACLs and Authorization
• Access rights

• The ACL server does not support negative permissions; once an
ACL entry grants a right to the user, another entry cannot revoke
that right.

Implementation

• To improve scalability, the server has a Berkeley DB backend,
which allows it to efficiently store and query groups with thousands
of users.

• Berkeley DB is also used to store the authentication server‘s cache

Authentication server

Implementation

• Files are stored on the server‘s disk using NFSv3. This offers
portability to any OS that supports this file system.

• File ACLs are stored in the first 512 bytes of the file and directory
ACLs in a special file in the directory called .SFSACL

• Use of a text-based format for the ACLs.
• Permissions

– When the server receives a request, it retrieves the necessary ACLs
and decides whether to permit the request

• Caching
– The server caches ACLs to avoid issuing extra NFS requests
– The server caches the permissions granted to a user for a particular

ACL based on his credentials

ACL-enabled file system

Implementation

• Tools for manipulating of groups and ACLs

Usage

Evaluation

• The number of bytes that the authentication server must transfer to
update its cache depends on the number of remote records that it
needs to fetch

• Group records are fetched using a QUERY RPC

• Connecting to the remote authentication server requires two RPCs

• Because the implementation caches secure channels, only one
channel is established during an update cycle

Authentication server

Evaluation

B: Total number of bytes transferred
Q: Size of the RPC request
R: Size of the Reply
M: Number of users in the group (or number of changes to the group)
S: Size of a single user (or change)
O: RPC overhead incurred for each additional 250 users

Experimental Results:

Authentication server

Evaluation

B: Total number of bytes transferred
Q: Size of the RPC request
R: Size of the Reply
M: Number of users in the group (or number of changes to the group)
S: Size of a single user (or change)
O: RPC overhead incurred for each additional 250 users

Total number of bytes transferred for a particular group size or number of changes
is given by the following formula

Authentication server

Evaluation

• The RPC overhead is insignificant, only a few percent of the total
bytes transferred

• The Authentication server can reasonably support group sizes up to
tens of thousands

Authentication server

Evaluation

• Penalty due to ACL mechanisms
• Results of running a benchmark:

ACL-enabled file system

Future Work
• Add the ability to update the cache more or less frequently

• Add the option to restrict users from naming certain remote
principals

Conclusion
• Generality is sacrificed for ease-of-use and simplicity of

implementation
• The authentication server does not require an infrastructure for

managing certificates
• Issuing credentials does not require contacting remote sites during

file access
• Experiments demonstrate that the server can scale to groups with

tens of thousands of users
• Assumption of formation of a trusting group.

