Chapter 9 DATA

- Motivation
- Data gathering with coding
- Self-coding
- Excursion: Shallow Light Tree
- Foreign coding
- Multicoding
- Universal data gathering tree
- Max, Min, Average, Median, Count Distinct, ...
- Energy-efficient broadcasting

Sensor networks

- Sensor nodes
- Processor \& memory
- Short-range radio
- Battery powered
- Requirements
- Monitoring geographic region
- Unattended operation

- Long lifetime

Data gathering

- All nodes produce relevant information about their vicinity periodically.
- Data is conveyed to an information sink for further processing.

Routing scheme

[^0]
More than one sink?

- The simplest trick in the book: If the sensed data of a node changes not too often (e.g. temperature), the node only needs to send a new message when its data changes.
- Improvement: Only send change of data, not actual data (similar to video codecs)

- Use the anycast approach, and send to the closest sink.
- In the simplest case, a source wants to minimize the number of hops. To make anycast work, we only need to implement the regular distance-vector routing algorithm.
- However, one can imagine more complicated schemes where e.g. sink load is balanced, or even intermediate load is balanced.

Correlated Data

- Different sensor nodes partially monitor the same spatial region.
\Rightarrow Data correlation
- Data might be processed as it is routed to the information sink.
\square
In-network coding

At which node is node
u's data encoded?

> Find a routing scheme and a coding scheme to deliver data packets from all nodes to the sink such that the overall energy consumption is minimal.

Coding strategies

- Multi-input coding
- Exploit correlation among several nodes.
- Combined aggregation of all incoming data.
\Rightarrow Recoding at intermediate nodesSynchronous communication model
- Single-input coding
- Encoding of a nodes data only depends on the side information of one other node.
\square No recoding at intermediate nodes
\Rightarrow No waiting for belated information at intermediate nodes

Single-input coding

- Self-coding
- A node can only encode its raw data in the presence of side information.

- Foreign coding
- A node can use its raw data to encode data it is relaying.

Algorithm

- LEGA (Low Energy Gathering Algorithm)
- Based on the shallow light tree (SLT)
- Compute SLT rooted at the sink t
- The sink t transmits its packet p_{t}
\qquad Size $=s_{r}$
- Upon reception of a data packet p_{i} at node v_{i}
- Encode p_{i} with $p_{j} \rightarrow p_{i}^{j}$
- Transmit p_{i}^{j} to the sink t
- Transmit p_{i} to all children

Self-coding

- Lower-bound the cost of an optimal $\xrightarrow[\begin{array}{l}\text { Set of nodes that encode } \\ \text { with data from } u\end{array}]{ }$

- Two ways to lower-bound this equation:
$-c_{o p t} \geq \sum_{u \in V} s_{e} \cdot \operatorname{SP}(u, t)$
$-c_{\text {opt }} \geq s_{r} \cdot c(\mathrm{MST})$

Distributed Computing Group

Excursion: Shallow-Light Tree (SLT)

- Introduced by [Awerbuch, Baratz, Peleg, PODC 1990]
- Improved by [Khuller, Raghavachari, Young, SODA 1993]
- new name: Light-Approximate-Shortest-Path-Tree (LAST)
- Idea: Construct a spanning tree for a given root r that is both a MSTapproximation as well as a SPT-approximation for the root r . In particular, for any $\gamma>0$

$$
\begin{aligned}
& -c(\mathrm{SLT}) \leq(1+\sqrt{2} / \gamma) \cdot c(\mathrm{MST}) \\
& -d_{S L T}\left(v_{i}, r\right) \leq(1+\sqrt{2} \gamma) \cdot \operatorname{SP}\left(v_{i}, r\right)
\end{aligned}
$$

- Remember:
- MST: Easily computable with e.g. Prim's greedy edge picking algorithm
- SPT: Easily computable with e.g. Dijkstra's shortest path algorithm
- Is a good SPT not automatically a good MST (or vice versa)?

The SLT Algorithm

1. Compute MST H of Graph G;
2. Compute all shortest paths (SPT) from the root r.
3. Compute preordering of MST with root r.
4. For all nodes v in order of their preordering do

- Compute shortest path from r to u in H . If the cost of this shortest path in H is more than a factor α more than the cost of the shortest path in G, then just add the shortest path in G to H .

5. Now simply compute the SPT with root r in H .

- Sounds crazy... but it works!
- Main Theorem: Given an $\alpha>1$, the algorithm returns a tree T rooted at r such that all shortest paths from r to u in T have cost at most α the shortest path from r to u in the original graph (for all nodes u). Moreover the total cost of T is at most $\beta=1+2 /(\alpha-1)$ the cost of the MST.
- We need an ingredient: A preordering of a rooted tree is generated when ordering the nodes of the tree as visited by a depth-first search algorithm.

Distributed Computing Group

An example, $\alpha=2$

- The SPT α-approximation is clearly given since we included all necessary paths during the construction and in step 5 only removed edges which were not in the SPT.
- We need to show that our final tree is a β-approximation of the MST. In fact we show that the graph H before step 5 is already a β approximation!
- For this we need a little helper lemma first...
- Lemma: Let T be a rooted spanning tree, with root r, and let z_{0}, z_{1}, $\ldots, \mathrm{z}_{\mathrm{k}}$ be arbitrary nodes of T in preorder. Then,

$$
\sum_{i=1}^{k} d_{T}\left(z_{i-1}, z_{i}\right) \leq 2 \cdot \operatorname{cost}(T)
$$

- "Proof by picture": Every edge is traversed at most twice.
- Remark: Exactly like the 2-approximation algorithm for metric TSP.

Proof of Main Theorem (2)

- Let $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{k}}$ be the set of k nodes for which we added their shortest paths to the root r in the graph in step 4. In addition, let z_{0} be the root r. The node z_{i} can only be in the set if (for example) $d_{G}\left(r, z_{i-1}\right)+d_{\text {MST }}\left(z_{i-1}, z_{i}\right)>\alpha d_{G}\left(r, z_{i}\right)$, since the shortest path $\left(r, z_{i-1}\right)$ and the path on the MST $\left(z_{i-1}, z_{i}\right)$ are already in H when we study z_{i}.
- We can rewrite this as $\alpha d_{G}\left(r, z_{i}\right)-d_{G}\left(r, z_{i-1}\right)<d_{\text {MST }}\left(z_{i-1}, z_{i}\right)$. Summing up:

$\alpha d_{G}\left(r, z_{1}\right)-d_{G}\left(r, z_{0}\right)$	$<d_{\text {MST }}\left(z_{0}, z_{1}\right)$	$(i=1)$
$\alpha d_{G}\left(r, z_{2}\right)-d_{G}\left(r, z_{1}\right)$	$<d_{\text {MST }}\left(z_{1}, z_{2}\right)$	$(i=2)$
\ldots	\ldots	\ldots
$\alpha d_{G}\left(r, z_{k}\right)-d_{G}\left(r, z_{k-1}\right)$	$<d_{\text {MST }}\left(z_{k-1}, z_{k}\right)$	$(i=k)$

$\Sigma_{\mathrm{i}=1 \ldots \mathrm{k}}(\alpha-1) \mathrm{d}_{\mathrm{G}}\left(\mathrm{r}, \mathrm{z}_{\mathrm{i}}\right) \quad+\mathrm{d}_{\boldsymbol{g}}\left(\mathrm{r}, \mathrm{z}_{\mathrm{k}}\right) \quad<\Sigma_{\mathrm{i}=1 \ldots \mathrm{k}} \mathrm{d}_{\text {MST }}\left(\mathrm{z}_{\mathrm{i}-1}, \mathrm{z}_{\mathrm{i}}\right)$

Proof of Main Theorem (3)

- In other words, $(\alpha-1) \Sigma_{\mathrm{i}=1 \ldots \mathrm{k}} \mathrm{d}_{\mathrm{G}}\left(\mathrm{r}, \mathrm{z}_{\mathrm{i}}\right)<\Sigma_{\mathrm{i}=1 \ldots \mathrm{k}} \mathrm{d}_{\mathrm{MST}}\left(\mathrm{z}_{\mathrm{i}-1}, \mathrm{z}_{\mathrm{i}}\right)$
- All we did in our construction of H was to add exactly at most the $\operatorname{cost} \Sigma_{\mathrm{i}=1 \ldots \mathrm{k}} \mathrm{d}_{\mathrm{G}}\left(\mathrm{r}, \mathrm{z}_{\mathrm{i}}\right)$ to the cost of the MST. In other words, $\operatorname{cost}(H) \leq \operatorname{cost}(M S T)+\Sigma_{i=1 \ldots k} d_{G}\left(r, z_{i}\right)$.
- Using the inequality on the top of this slide we have $\operatorname{cost}(\mathrm{H})<\operatorname{cost}(\mathrm{MST})+1 /(\alpha-1) \Sigma_{\mathrm{i}=1 \ldots \mathrm{k}} \mathrm{d}_{\text {MST }}\left(\mathrm{z}_{\mathrm{i}-1}, \mathrm{z}_{\mathrm{i}}\right)$.
- Using our preordering lemma we have $\operatorname{cost}(H) \leq \operatorname{cost}(M S T)+1 /(\alpha-1) 2 \operatorname{cost}(M S T)=1+2 /(\alpha-1) \operatorname{cost}(M S T)$
- That's exactly what we needed: $\beta=1+2 /(\alpha-1)$.
- The SLT has many applications in communication networks.
- Essentially, it bounds the cost of unicasting (using the SPT) and broadcasting (using the MST).
- Remark: If you use $\alpha=1+\sqrt{2}$ then

$$
\beta=1+2 /(\alpha-1)=\alpha .
$$

www.dia.unisa.it/~ventre

Theorem: LEGA achieves a $2(1+\sqrt{2})$-approximation of the optimal topology. (We use $\alpha=1+\sqrt{2}$.)

$\square s_{r} \cdot c($ SLT $)$
$\Longrightarrow \sum_{v_{i} \in V} s_{e} \cdot d_{S L T}\left(v_{i}, t\right)$
$c_{L E G A} \leq s_{r} \cdot(1+\sqrt{2}) c(\mathrm{MST})+(1+\sqrt{2}) \sum_{v_{i} \in V} s_{e} \cdot \operatorname{SP}\left(v_{i}, t\right)$
Slide 9/10
Distributed Computing Group
Mobile Computing
R. Wattenhofer

Foreign coding

- MEGA (Minimum-Energy Gathering Algorithm)
- Superposition of two tree constructions.
- Compute the shortest path tree (SPT) rooted at t.

- Determine for each node u a corresponding encoding node v.

Coding tree construction

- Build complete directed graph
- Weight of an edge $e=\left(v_{i}, v_{j}\right)$

Cost from v_{j} to the sink t

- Compute a directed minimum spanning tree (arborescence) of this graph. (This is not trivial, but possible.)

Theorem: MEGA computes a minimum-energy data gathering topology for the given network.

All costs are summarized in the edge weights of the directed graph.

Distributed Computing Group

Summary

- Self-coding:
- The problem is NP-hard [Cristescu et al, INFOCOM 2004]
- LEGA uses the SLT and gives a $2(1+\sqrt{2})$-approximation.
- Attention: We assumed that the raw data resp. the encoded data always needs s_{r} resp. s_{e} bits (no matter how far the encoding data is!). This is quite unrealistic as correlation is usually regional.
- Foreign coding
- The problem is in P, as computed by MEGA.
- What if we allow both coding strategies at the same time?
- What if multicoding is still allowed?

The algorithm

- Remark: If the network is not a complete graph, or does not obey the triangle inequality, we only need to use the cost of the shortest path as the distance function, and we are fine.
- Let S be the set of source nodes. Assume that S is a power of 2. (If not, simply add copies of the sink node until you hit the power of 2.) Now do the following:

1. Find a min-cost perfect matching in S.
2. For each of the matching edges, remove one of the two nodes from S (throw a regular coin to choose which node).
3. If the set S still has more than one node, go back to step 1. Else connect the last remaining node with the sink.

Multicoding

- Hierarchical matching algorithm [Goel \& Estrin SODA 2003].
- We assume to have concave, non-decreasing aggregation functions. That is, to transmit data from k sources, we need $f(k)$ bits with $f(0)=0, f(k) \geq f(k-1)$, and $f(k+1) / f(k) \leq f(k) / f(k-1)$.

- The nodes of the network must be a metric space*, that is, the cost of sending a bit over edge (u, v) is $c(u, v)$, with
- Non-negativity: $c(u, v) \geq 0$
- Zero distance: $c(u, u)=0$ (*we don't need the identity of indescernibles)
- Symmetry: $c(u, v)=c(v, u)$
- Triangle inequality: $\mathrm{c}(\mathrm{u}, \mathrm{w}) \leq \mathrm{c}(\mathrm{u}, \mathrm{v})+\mathrm{c}(\mathrm{v}, \mathrm{w})$

Distributed Computing Group

The result

- Theorem: For any concave, non-decreasing aggregation function f, and for [optimal] total cost $\left.{ }^{[}{ }^{\star}\right]$, the hierarchical matching algorithm guarantees

$$
E\left[\max _{\forall f} \frac{C(f)}{C^{*}(f)}\right] \leq 1+\log k
$$

- That is, the expectation of the worst cost overhead is logarithmically bounded by the number of sources.
- Proof: Too intricate to be featured in this lecture.

Remarks

- For specific concave, non-decreasing aggregation functions, there are simpler solutions.
- For $f(x)=x$ the SPT is optimal.
- For $f(x)=$ const (with the exception of $f(0)=0$), the MST is optimal.
- For anything in between it seems that the SLT again is a good choice.
- For any a priori known fone can use a deterministic solution by [Chekuri, Khanna, and Naor, SODA 2001]
- If we only need to minimize the maximum expected ratio (instead of the expected maximum ratio), [Awerbuch and Azar, FOCS 1997] show how it works.
- Again, sources are considered to aggregate equally well with other sources. A correlation model is needed to resemble the reality better.
- LEACH [Heinzelman et al. HICSS 2000]: randomized clustering with data aggregation at the clusterheads.
- Heuristic and simulation only.
- For provably good clustering, see the next chapter.
- Correlated data gathering [Cristescu et al. INFOCOM 2004]:
- Coding with Slepian-Wolf
- Distance independent correlation among nodes.
- Encoding only at the producing node in presence of side information.
- Same model as LEGA, but heuristic \& simulation only
- NP-hardness proof for this model.

TinyDB and TinySQL

- Use paradigms familiar from relational databases to simplify the "programming" interface for the application developer.
- TinyDB then supports in-network aggregation to speed up communication.

SELECT roomno, AVERAGE(light), AVERAGE(volume) FROM sensors
GRoUP BY roomno
HAVING AVERAGE(light) > l AND AVERAGE(volume) > v EPOCH DURATION 5min

SELECT <aggregates>, <attributes>
[FROM \{sensors | <buffer>\}]
[WHERE <predicates>]
[GROUP BY <exprs>]
[SAMPLE PERIOD <const> | ONCE] [INTO <buffer>] [TRIGGER ACTION <command>]

Data Aggregation: N-to-1 Communication

- SELECT MAX(temp) FROM sensors WHERE temp > 15.

- In sensor network applications
- Queries can be frequent
- Sensor groups are time-varying
- Events happen in a dynamic fashion
- Option 1: Construct aggregation trees for each group
- Setting up a good tree incurs communication overhead
- Option 2: Construct a single spanning tree
- When given a sensor group, simply use the induced tree

Example

- The red tree is the universal spanning tree. All links cost 1.
root/sink

- Given
- A set of nodes V in the Euclidean plane (or forming a metric space)
- A root node $r \in V$
- Define stretch of a universal spanning tree T to be

$$
\max _{S \subseteq V} \frac{\operatorname{cost}(\text { induced tree of } S+r \text { on } T)}{\operatorname{cost}(\text { minimum Steiner tree of } S+r)} .
$$

- We're looking for a spanning tree T on V with minimum stretch.

Given the lime subset...

Induced Subtree

- The cost of the induced subtree for this set S is 11 . The optimal was 8 .
root/sink

Distributed Computing Group Mobile Computing R. Wattenhofer

Main results

- [Jia, Lin, Noubir, Rajaraman and Sundaram, STOC 2005]
- Theorem 1: (Upper bound)

For the minimum UST problem on Euclidean plane, an approximation of $\mathrm{O}(\log n)$ can be achieved within polynomial time.

- Theorem 2: (Lower bound)

No polynomial time algorithm can approximate the minimum UST problem with stretch better than $\Omega(\log n / \log \log n)$.

- Proofs: Not in this lecture.

Distributed Computing Group

Algorithm sketch

- For the simplest Euclidean case:
- Recursively divide the plane and select random node.
- Results: The induced tree has logarithmic overhead. The aggregation delay is also constant.

Simulation with random node distribution \& random events

- First step for data gathering, sort of.
- Given a set of nodes in the plane
- Goal: Broadcast from a source to all nodes
- In a single step, a node may transmit within a range by appropriately adjusting transmission power.
- Energy consumed by a transmission of radius r is proportional to r^{α}, with $\alpha \geq 2$.

- Problem: Compute the sequence
of transmission steps that consume minimum total energy, even in a centralized way.
- In a tree, power for each parent node proportional to α 'th exponent of distance to farthest child in tree:
- Shortest Paths Tree (SPT)
- Minimum Spanning Tree (MST)
- Broadcasting Incremental Power (BIP)
- "Node" version of Dijkstra's SPT algorithm
- Maintains an arborescence rooted at source
- In each step, add a node that can be reached with minimum incremen in total cost.
- Results:
- NP, not even PTAS, there is a constant approximation. [Clementi, Crescenzi, Penna, Rossi, Vocca, STACS 2001]
- Analysis of the three heuristics. [Wan, Calinescu, Li, Frieder, Infocom 2001]
- Better and better approximation constants, e.g. [Ambühl, ICALP 2005]

Distributed Computing Group
Mobile Computing
R. Wattenhofer

Lower Bound on SPT

- Assume ($\mathrm{n}-1$)/2 nodes per ring
- Total energy of SPT:

$$
(n-1)\left(\varepsilon^{\alpha}+(1-\varepsilon)^{\alpha}\right) / 2
$$

- Better solution
- Broadcast to all nodes
- Cost 1
- Approximation ratio $\Omega(\mathrm{n})$.

Performance of the MST Heuristic

- Weight of an edge (u, v) equals $d(u, v)^{\alpha}$
- MST for these weights same as Euclidean MST
- Weight is an increasing function of distance
- Follows from correctness of Prim's algorithm
- Upper bound on total MST weight
- Lower bound on optimal broadcast tree

 Empty

- Assume $\alpha=2$
- For each edge e, its diamond accounts for an area of exactly $\frac{|e|^{2}}{2 \sqrt{3}}$

- Diamonds for edges in circle can be slightly outside circle, but not too much: The radius factor is at most $2 / \sqrt{3}$, hence the total area accounted for is at most $\pi(2 / \sqrt{3})=4 \pi / 3$
- Now we can bound the cost of the MST in a unit disk with $\operatorname{cost}(\mathrm{MST}) \leq \sum_{e}|e|^{2}=2 \sqrt{3} \sum_{e} \frac{|e|^{2}}{2 \sqrt{3}} \leq 2 \sqrt{3} \frac{4 \pi}{3}=\frac{8 \pi}{\sqrt{3}} \approx 14.51$.
- This analysis can be extended to $\alpha>2$, and improved to 12 .

[^0]: On which path is node u's data forwarded to the sink?

