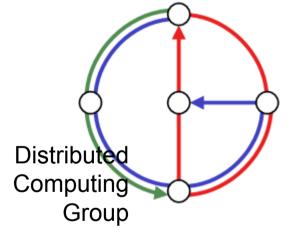
# Chapter 7 TOPOLOGY CONTROL



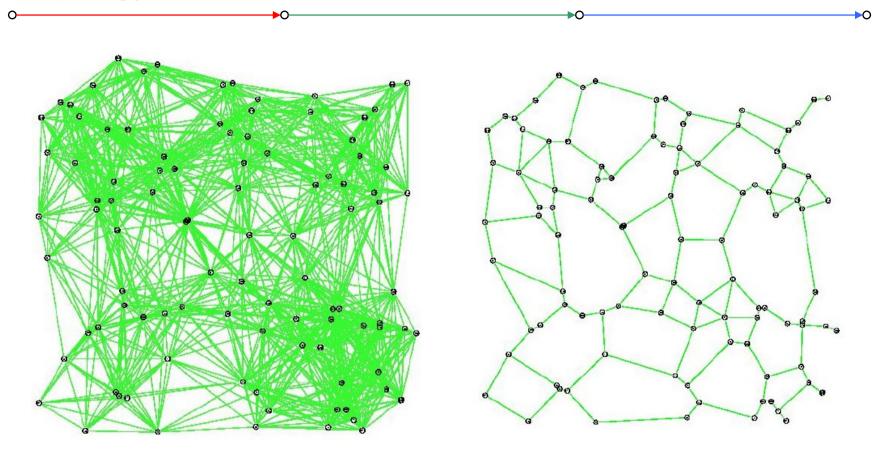
Mobile Computing Winter 2005 / 2006

# Overview – Topology Control

- Gabriel Graph et al.
- XTC
- Interference
- SINR & Scheduling Complexity



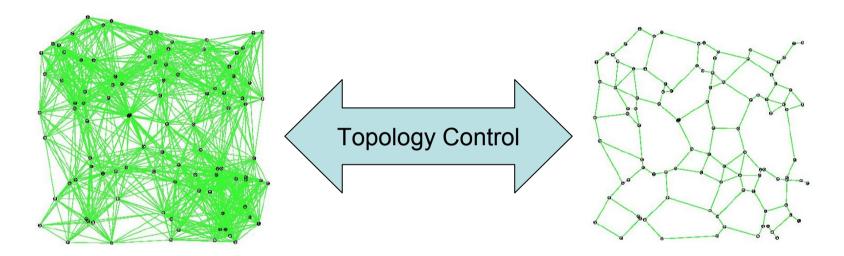
# **Topology Control**



- Drop long-range neighbors: Reduces interference and energy!
- But still stay connected (or even spanner)

## Topology Control as a Trade-Off

Sometimes also clustering, Dominating Set construction (See later)



Network Connectivity Spanner Property

$$d(u,v) \cdot t \geq d_{\text{TC}}(u,v)$$

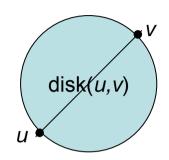
Conserve Energy
Reduce Interference
Sparse Graph, Low Degree
Planarity
Symmetric Links
Less Dynamics

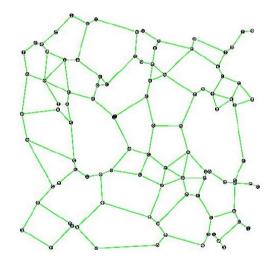


**>**0

# Gabriel Graph

- Let disk(u,v) be a disk with diameter (u,v) that is determined by the two points u,v.
- The Gabriel Graph GG(V) is defined as an undirected graph (with E being a set of undirected edges). There is an edge between two nodes u,v iff the disk(u,v) including boundary contains no other points.
- As we will see the Gabriel Graph has interesting properties.

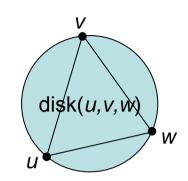


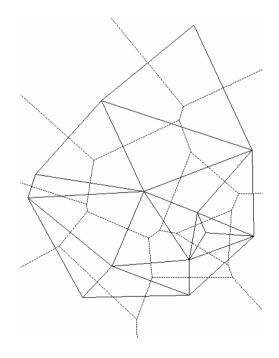




# **Delaunay Triangulation**

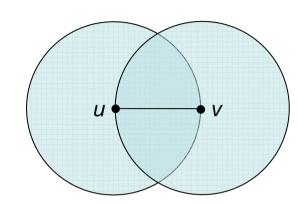
- Let disk(u,v,w) be a disk defined by the three points u,v,w.
- The Delaunay Triangulation (Graph) DT(V) is defined as an undirected graph (with E being a set of undirected edges). There is a triangle of edges between three nodes u, v, w iff the disk(u, v, w) contains no other points.
- The Delaunay Triangulation is the dual of the Voronoi diagram, and widely used in various CS areas; the DT is planar; the distance of a path (s,...,t) on the DT is within a constant factor of the s-t distance.



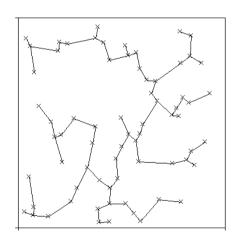


# Other planar graphs

- Relative Neighborhood Graph RNG(V)
- An edge e = (u,v) is in the RNG(V) iff there is no node w with (u,w) < (u,v) and (v,w) < (u,v).</li>



- Minimum Spanning Tree MST(V)
- A subset of *E* of *G* of minimum weight which forms a tree on *V*.





# Properties of planar graphs

#### • Theorem 1:

 $MST(V) \subseteq RNG(V) \subseteq GG(V) \subseteq DT(V)$ 

#### Corollary:

Since the MST(V) is connected and the DT(V) is planar, all the planar graphs in Theorem 1 are connected and planar.

#### • Theorem 2:

The Gabriel Graph contains the Minimum Energy Path (for any path loss exponent  $\alpha \geq 2$ )

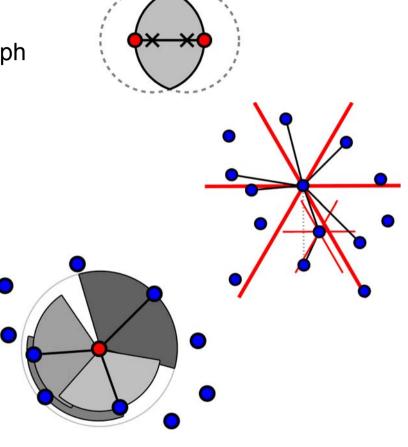
Corollary:

GG(V) ∩ UDG(V) contains the Minimum Energy Path in UDG(V)



## More examples

- β-Skeleton
  - Generalizing Gabriel ( $\beta$  = 1) and Relative Neighborhood ( $\beta$  = 2) Graph
- Yao-Graph
  - Each node partitions directions in k cones and then connects to the closest node in each cone
- Cone-Based Graph
  - Dynamic version of the Yao Graph. Neighbors are visited in order of their distance, and used only if they cover not yet covered angle



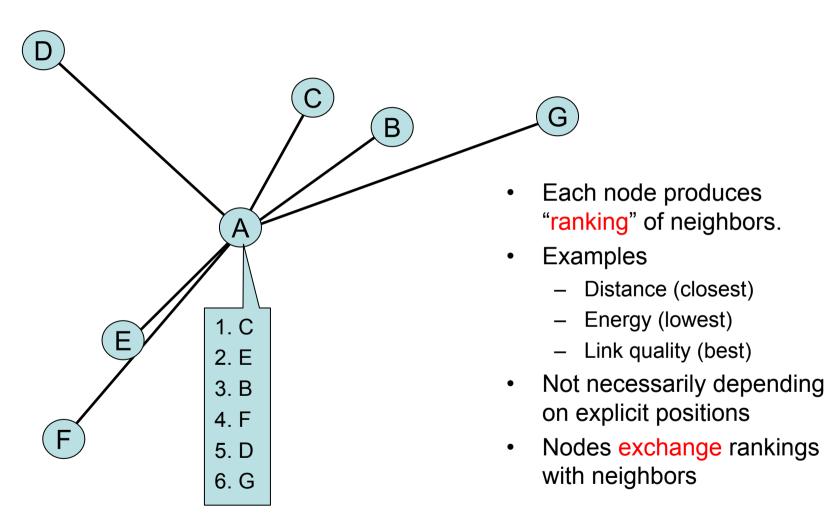


# XTC: Lightweight Topology Control

- Topology Control commonly assumes that the node positions are known.
- What if we do not have access to position information?
- XTC algorithm
- XTC analysis
  - Worst case
  - Average case

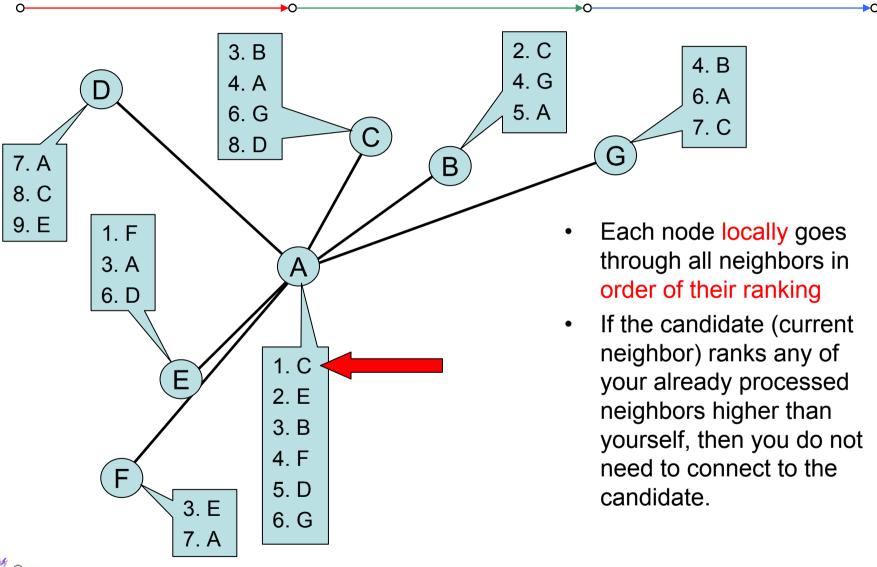


## XTC: lightweight topology control without geometry





## XTC Algorithm (Part 2)





# XTC Analysis (Part 1)

Symmetry: A node u wants a node v as a neighbor if and only if v wants u.

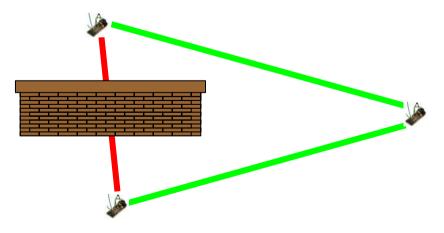
- Proof:
  - Assume 1) u → v and 2) u  $\leftarrow$  v
  - Assumption 2) ⇒ ∃w: (i) w ≺<sub>v</sub> u and (ii) w ≺<sub>u</sub> v

**Contradicts** Assumption 1)



# XTC Analysis (Part 1)

- Symmetry: A node u wants a node v as a neighbor if and only if v wants u.
- Connectivity: If two nodes are connected originally, they will stay so (provided that rankings are based on symmetric link-weights).
- If the ranking is energy or link quality based, then XTC will choose a topology that routes around walls and obstacles.

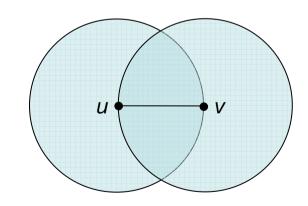




# XTC Analysis (Part 2)

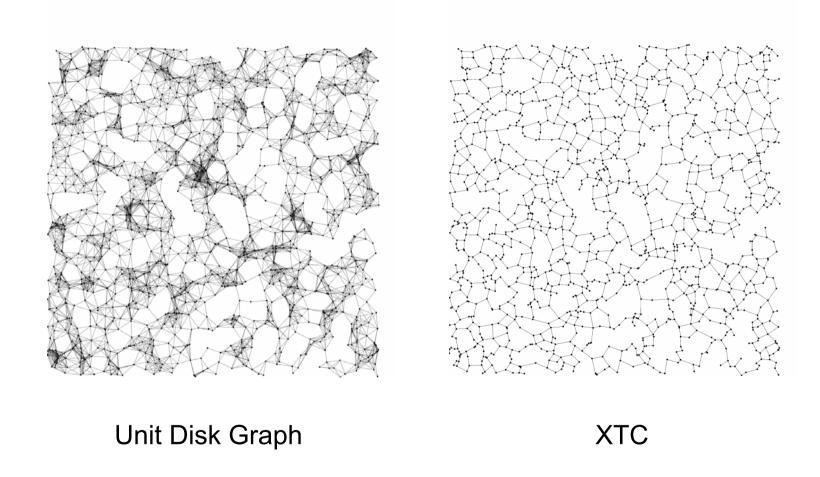
- If the given graph is a Unit Disk Graph (no obstacles, nodes homogeneous, but not necessarily uniformly distributed), then ...
- The degree of each node is at most 6.
- The topology is planar.
- The graph is a subgraph of the RNG.

- Relative Neighborhood Graph RNG(V):
- An edge e = (u,v) is in the RNG(V) iff there is no node w with (u,w) < (u,v) and (v,w) < (u,v).</li>



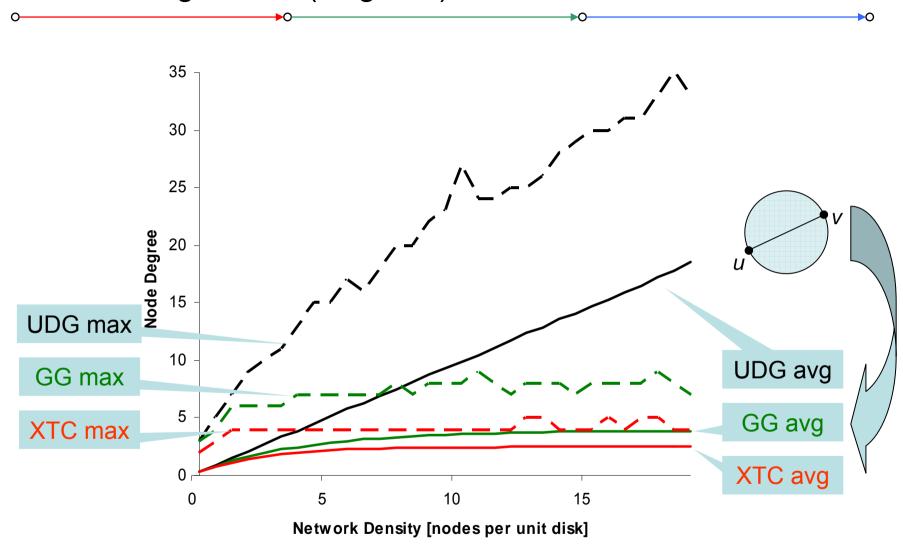


# XTC Average-Case



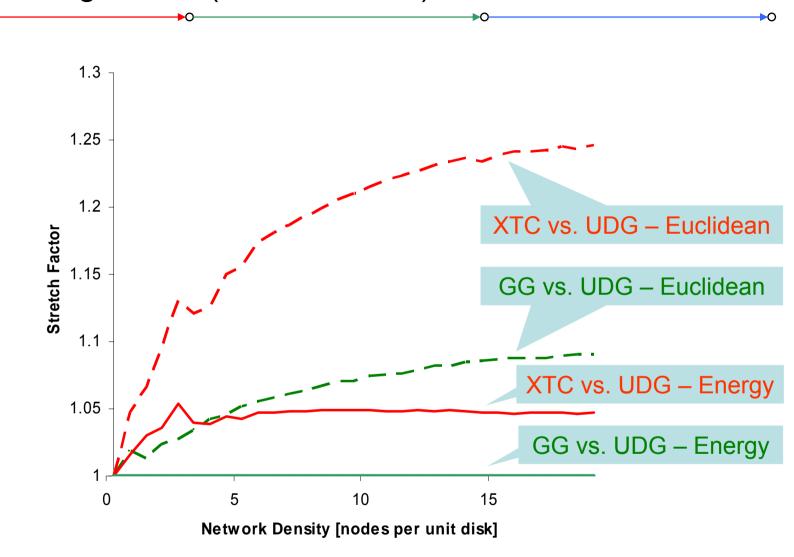


# XTC Average-Case (Degrees)



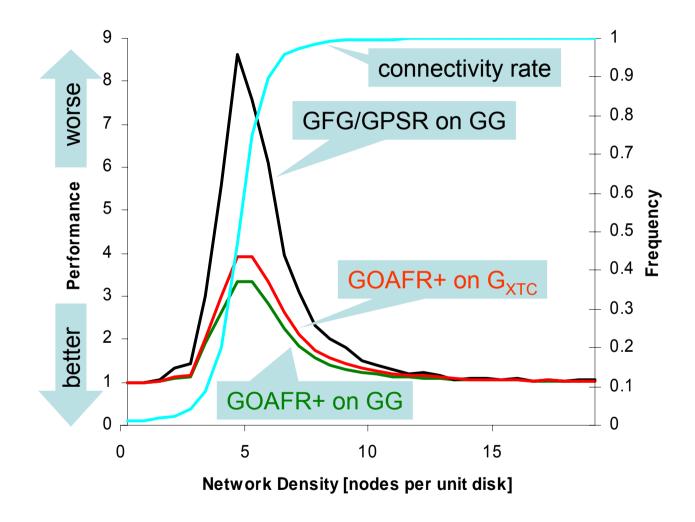


# XTC Average-Case (Stretch Factor)





# XTC Average-Case (Geometric Routing)

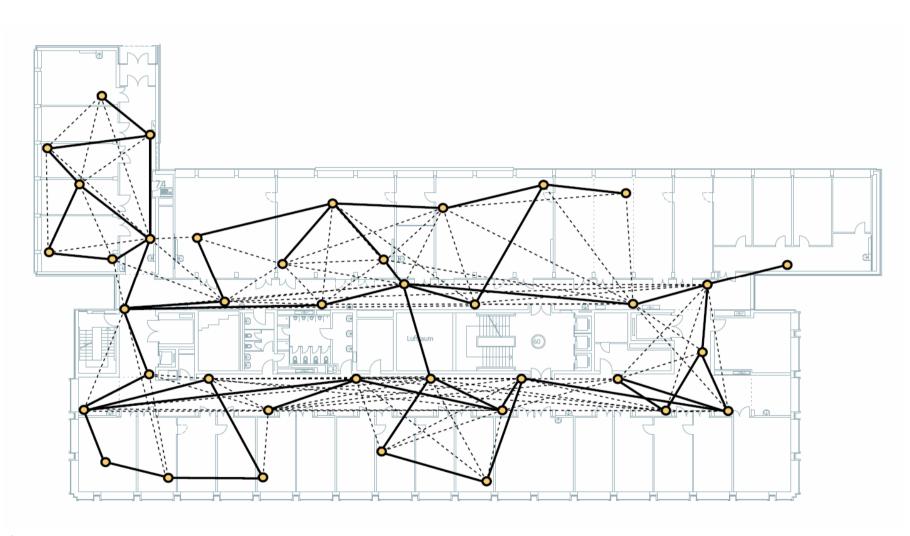




# k-XTC: More connectivity

- A graph is k-(node)-connected, if k-1 arbitrary nodes can be removed, and the graph is still connected.
- In k-XTC, an edge (u,v) is only removed if there exist k nodes w<sub>1</sub>, ..., w<sub>k</sub> such that the 2k edges (w<sub>1</sub>, u), ..., (w<sub>k</sub>, u), (w<sub>1</sub>,v), ..., (w<sub>k</sub>,v) are all better than the original edge (u,v).
- Theorem: If the original graph is k-connected, then the pruned graph produced by k-XTC is as well.
- Proof: Let (u,v) be the best edge that was removed by k-XTC. Using the construction of k-XTC, there is at least one common neighbor w that survives the slaughter of k-1 nodes. By induction assume that this is true for the j best edges. By the same argument as for the best edge, also the j+1st edge (u',v'), since at least one neighbor survives w' survives and the edges (u',w') and (v',w') are better.

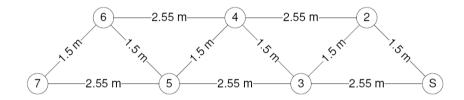
# Implementing XTC, e.g. BTnodes v3

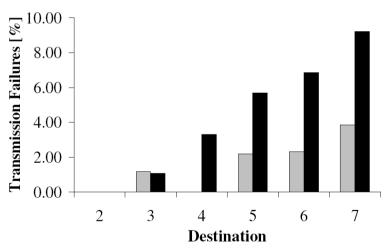


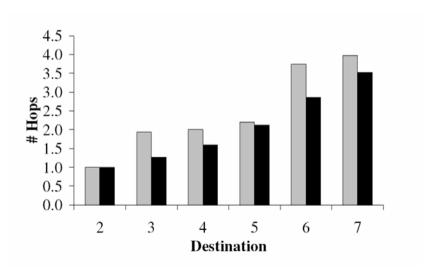


## Implementing XTC, e.g. on mica2 motes

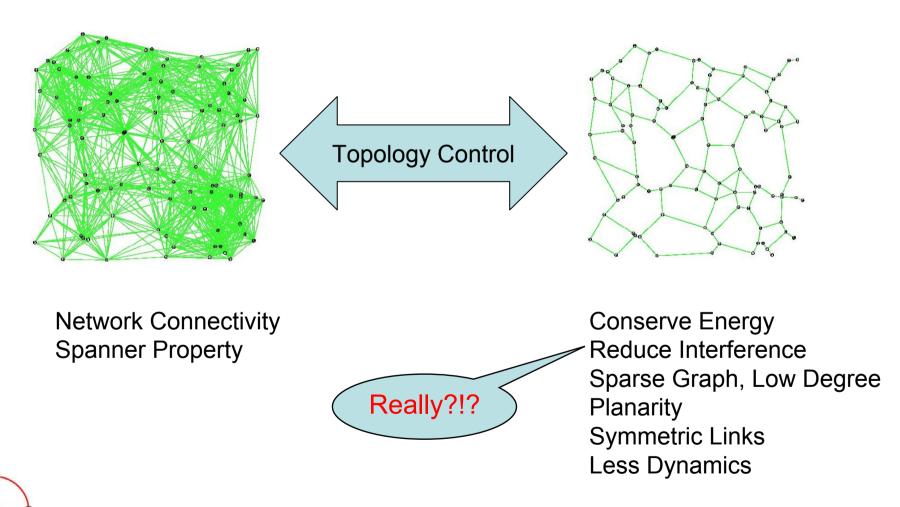
- Idea:
  - XTC chooses the reliable links
  - The quality measure is a moving average of the received packet ratio
  - Source routing: route discovery (flooding) over these reliable links only







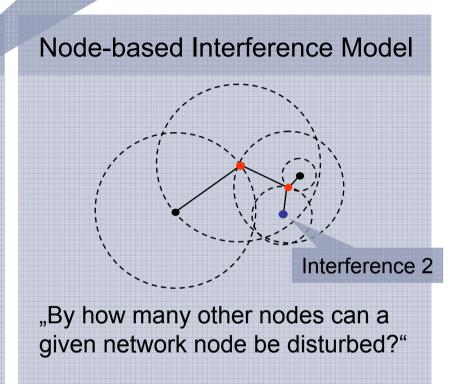
# Topology Control as a Trade-Off



Link-based Interference Model

Interference 8

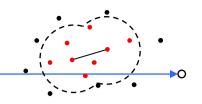
"How many nodes are affected by communication over a given link?"



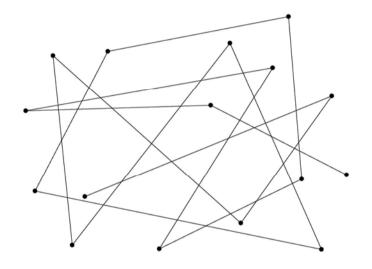
- Problem statement
  - We want to minimize maximum interference
  - At the same time topology must be connected or a spanner etc.



# Low Node Degree Topology Control?



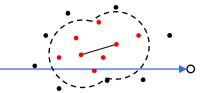
Low node degree does **not** necessarily imply low interference:



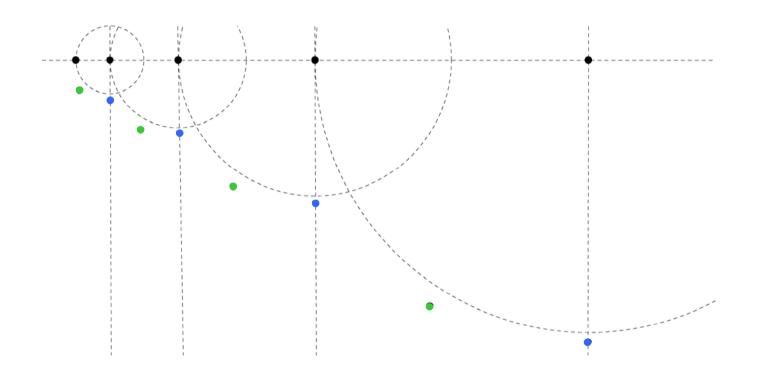
Very low node degree but huge interference



# Let's Study the Following Topology!

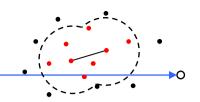


## ...from a worst-case perspective

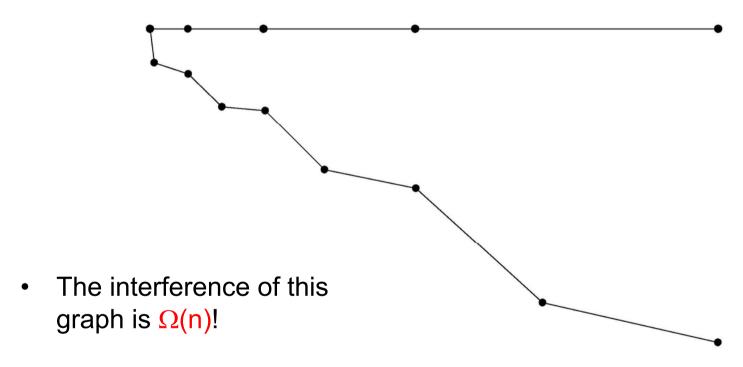




# Topology Control Algorithms Produce...

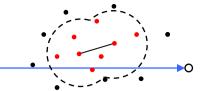


 All known topology control algorithms (with symmetric edges) include the nearest neighbor forest as a subgraph and produce something like this:

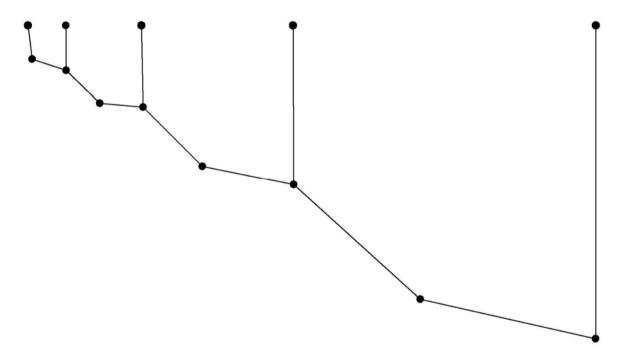




## But Interference...

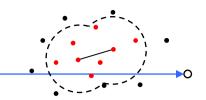


• Interference does not need to be high...



This topology has interference O(1)!!

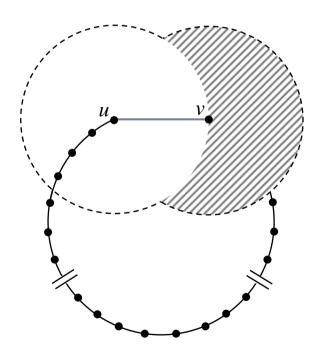


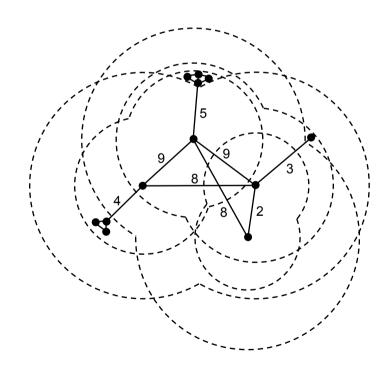


Interference-optimal topologies:

There is no local algorithm that can find a good interference topology

The optimal topology will not be planar





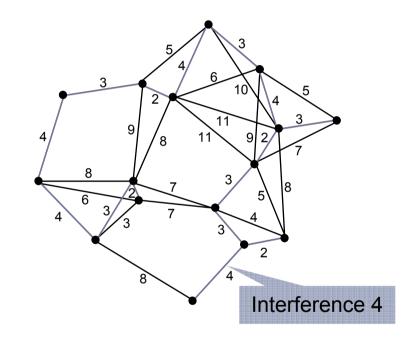


- LIFE (Low Interference Forest Establisher)
  - Preserves Graph Connectivity

#### LIFE

- Attribute interference values as weights to edges
- Compute minimum spanning tree/forest (Kruskal's algorithm)

LIFE constructs a minimuminterference forest



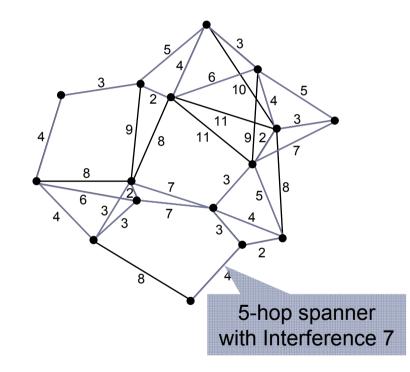


- LISE (Low Interference Spanner Establisher)
  - Constructs a spanning subgraph

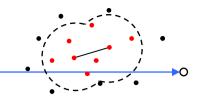
#### LISE

Add edges with increasing interference until spanner property fulfilled

LISE constructs a minimuminterference t-spanner







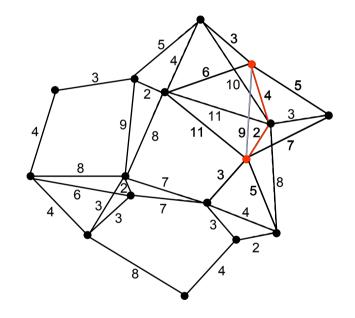
LocaLISE

Scalability

Constructs a spanner locally

#### LocaLISE

- Nodes collect (t/2)-neighborhood
- Locally compute interferenceminimal paths guaranteeing spanner property
- Only request that path to stay in the resulting topology



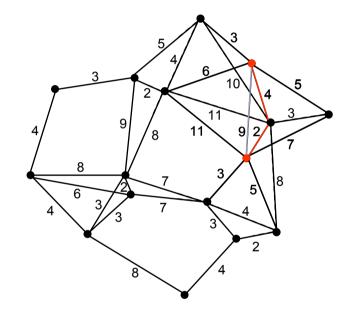
LocaLISE constructs a minimum-interference t-spanner



- LocaLISE (Low Interference Spanner Establisher)
  - Constructs a spanner locally

#### LocaLISE

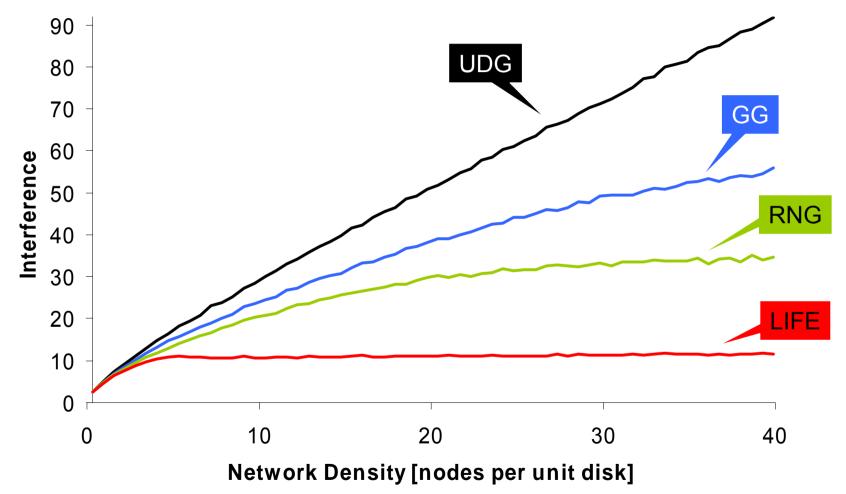
- Nodes collect (t/2)-neighborhood
- Locally compute interferenceminimal paths guaranteeing spanner property
- Only request that path to stay in the resulting topology



LocaLISE constructs a minimum-interference t-spanner



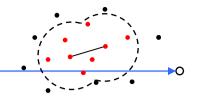
# Average-Case Interference: Preserve Connectivity

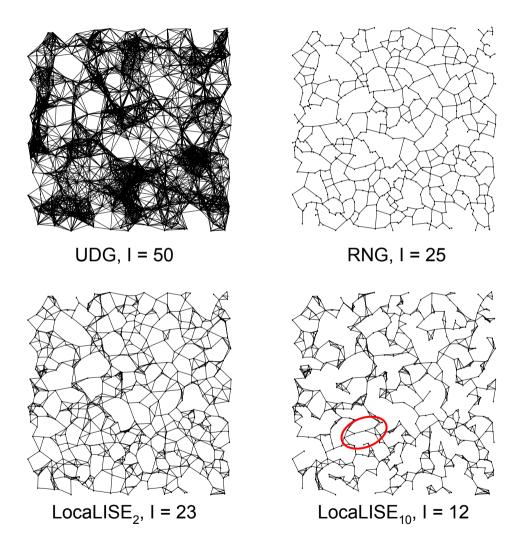




# Average-Case Interference: Spanners RNG 25 LLISE, t=2 20 Interference t=6 15 10 t=10 LIFE 5 0 5 10 0 15 **Network Density [nodes per unit disk]**

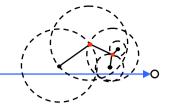




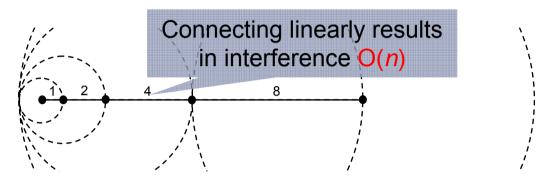




#### Node-based Interference Model



 Already 1-dimensional node distributions seem to yield inherently high interference...

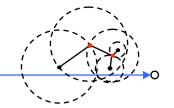


...but the exponential node chain can be connected in a better way

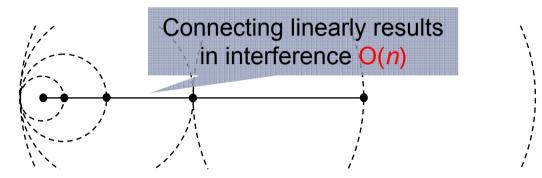




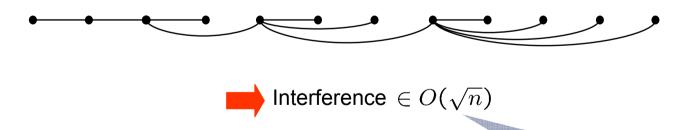
#### Node-based Interference Model



 Already 1-dimensional node distributions seem to yield inherently high interference...



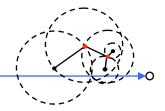
...but the exponential node chain can be connected in a better way



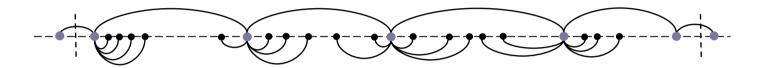


Matches an existing lower bound

## Node-based Interference Model



- Arbitrary distributed nodes in one dimension
  - Approximation algorithm with approximation ratio in  $O(\sqrt[4]{n})$

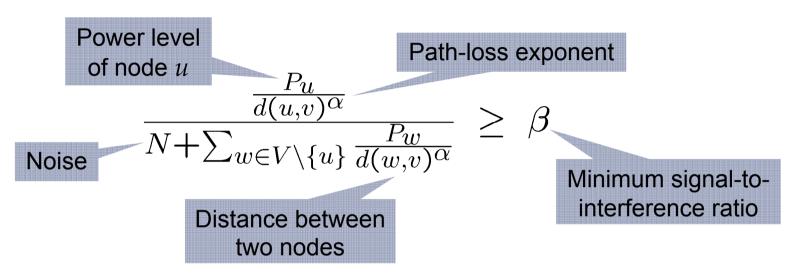


- Two-dimensional node distributions
  - Randomized algorithm resulting in interference  $O(\sqrt{n \log n})$
  - No deterministic algorithm so far...



#### Towards a More Realistic Interference Model...

Signal-to-interference and noise ratio (SINR)

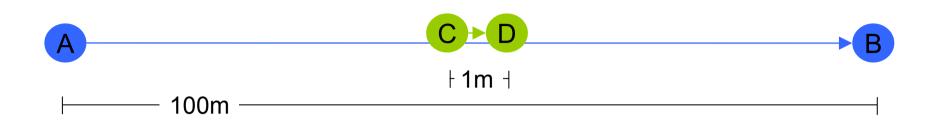


- Problem statement
  - Determine a power assignment and a schedule for each node such that all message transmissions are successful

SINR is always assured



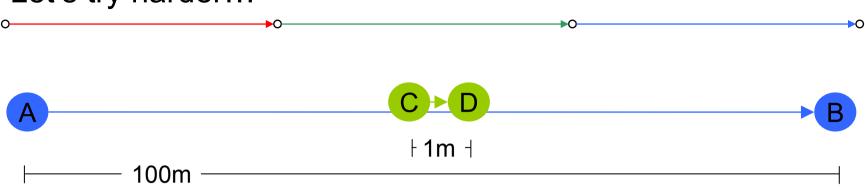
# Quiz: Can these two links transmit simultaneously?



- Graph-theoretical models: No!
  - Neither in- nor out-interference
- SINR model: constant power: No!
  - Node B will receive the transmission of node C
- SINR model: power according to distance-squared: No!
  - Node D will receive the transmission of node A



# Let's try harder...





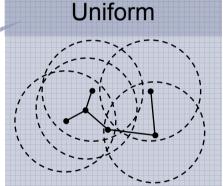
# A Simple Problem

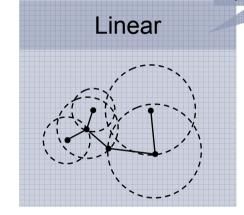
$$rac{rac{P_u}{d(u,v)^{lpha}}}{N+\sum_{w\in V\setminus\{u\}}rac{P_w}{d(w,v)^{lpha}}}\,\geq\,eta$$

- Each node in the network wants to send a message to an arbitrary other node
  - Commonly assumed power assignment schemes

Proportional to (receiver distance)<sup>a</sup>

Constant power level





 $\blacksquare$  Both lead to a schedule of length  $\in \Theta(n)$ 

- A clever power assignment results in a schedule of length  $\in O(\log^3 n)$ 

This has strong implications to MAC layer protocols

