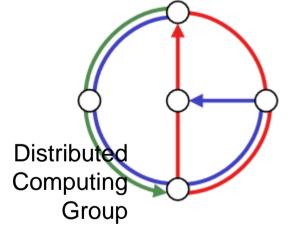
Chapter 6 GEOMETRIC ROUTING



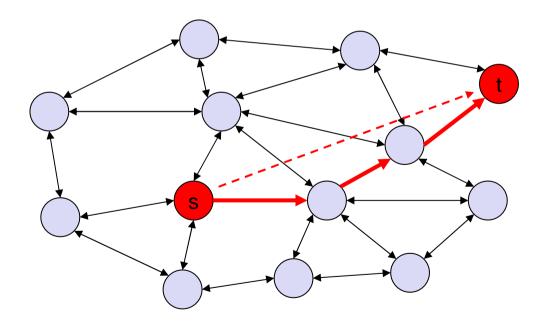
Mobile Computing Winter 2005 / 2006

Overview – Geometric Routing

- Geometric routing
- Greedy geometric routing
- Euclidean and planar graphs
- Unit disk graph
- Gabriel graph and other planar graphs
- Face Routing
- Greedy and Face Routing
- Geometric Routing without Geometry

Geometric (geographic, directional, position-based) routing

- ...even with all the tricks there will be flooding every now and then.
- In this chapter we will assume that the nodes are location aware (they have GPS, Galileo, or an ad-hoc way to figure out their coordinates), and that we know where the destination is.
- Then we simply route towards the destination

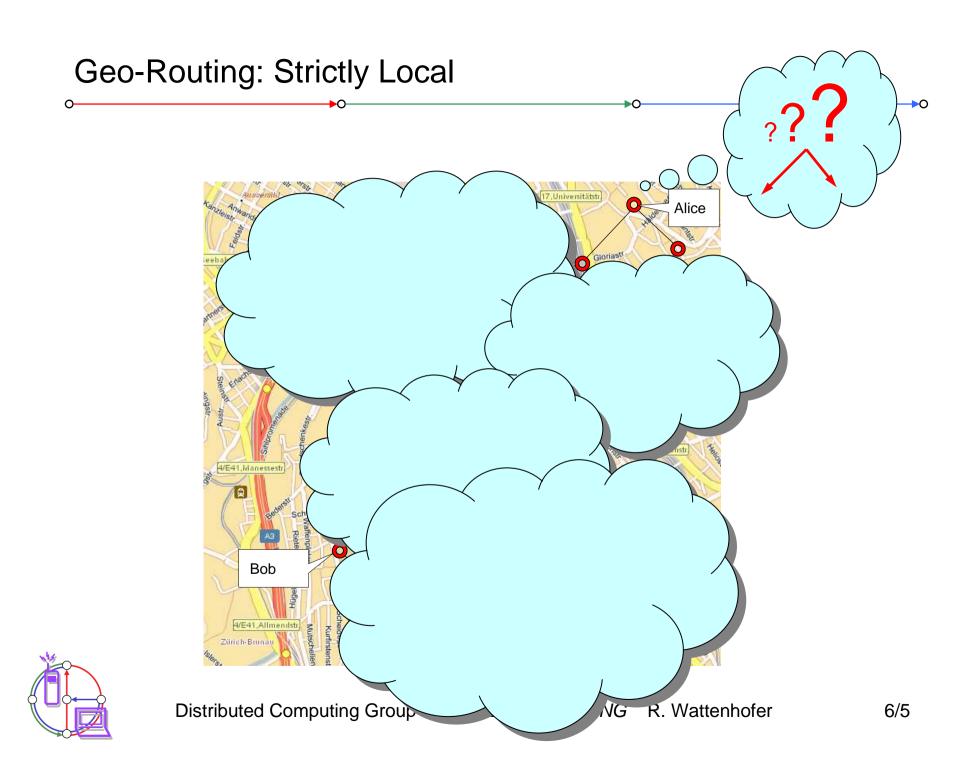


Geometric routing

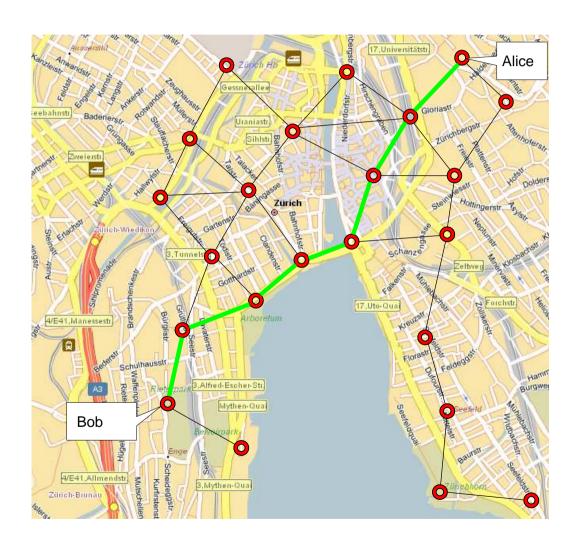
- Problem: What if there is no path in the right direction?
- We need a guaranteed way to reach a destination even in the case when there is no directional path...
- Hack: as in flooding nodes keep track of the messages they have already seen, and then they backtrack* from there

is secolarly

*backtracking? Does this mean that we need a stack?!?



Greedy Geo-Routing?



Greedy Geo-Routing?

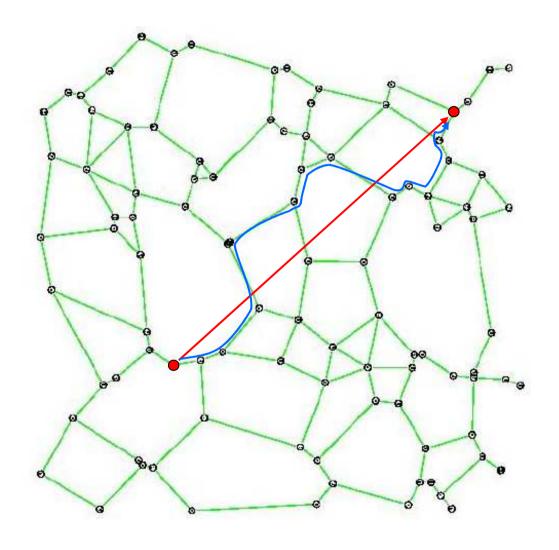
What is Geographic Routing?

A.k.a. geometric, location-based, position-based, etc.

- Each node knows its own position and position of neighbors
- Source knows the position of the destination
- No routing tables stored in nodes!
- Geographic routing makes sense
 - Own position: GPS/Galileo, local positioning algorithms
 - Destination: Geocasting, location services, source routing++
 - Learn about ad-hoc routing in general

Greedy routing

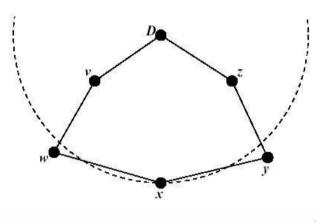
- Greedy routing looks promising.
- Maybe there is a way to choose the next neighbor and a particular graph where we always reach the destination?

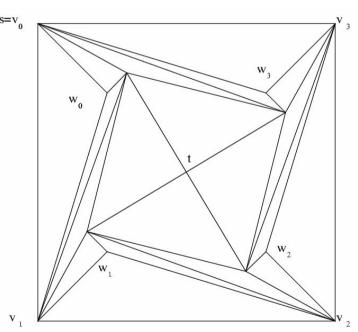


Examples why greedy algorithms fail

 We greedily route to the neighbor which is closest to the destination: But both neighbors of x are not closer to destination D

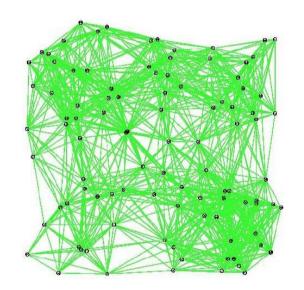
 Also the best angle approach might fail, even in a triangulation: if, in the example on the right, you always follow the edge with the narrowest angle to destination t, you will forward on a loop V₀, W₀, V₁, W₁, ..., V₃, W₃, V₀, ...

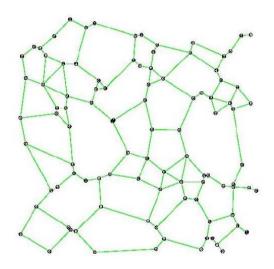




Euclidean and Planar Graphs

- Euclidean: Points in the plane, with coordinates
- Planar: can be drawn without "edge crossings" in a plane

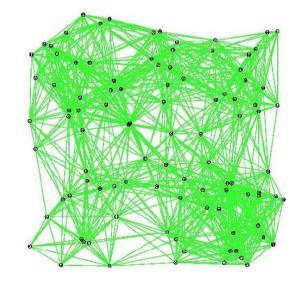




 Euclidean planar graphs (planar embeddings) simplify geometric routing.

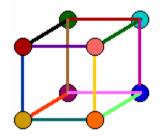
Unit disk graph

- We are given a set V of nodes in the plane (points with coordinates).
- The unit disk graph UDG(V) is defined as an undirected graph (with E being a set of undirected edges). There is an edge between two nodes u, v iff the Euclidean distance between u and v is at most 1.
- Think of the unit distance as the maximum transmission range.
- We assume that the unit disk graph *UDG* is connected (that is, there is a path between each pair of nodes)
- The unit disk graph has many edges.
- Can we drop some edges in the UDG to reduced complexity and interference?

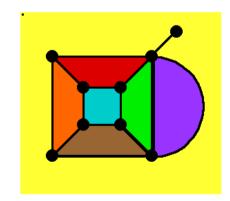


Planar graphs

 Definition: A planar graph is a graph that can be drawn in the plane such that its edges only intersect at their common end-vertices.

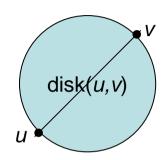


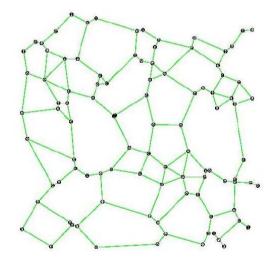
- Kuratowski's Theorem: A graph is planar iff it contains no subgraph that is edge contractible to K_5 or $K_{3,3}$.
- Euler's Polyhedron Formula: A connected planar graph with n nodes, m edges, and f faces has n m + f = 2.
- Right: Example with 9 vertices,14 edges, and 7 faces (the yellow "outside" face is called the infinite face)
- Theorem: A simple planar graph with n nodes has at most 3n−6 edges, for n≥3.



Gabriel Graph

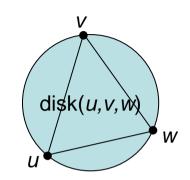
- Let disk(u,v) be a disk with diameter (u,v) that is determined by the two points u,v.
- The Gabriel Graph GG(V) is defined as an undirected graph (with E being a set of undirected edges). There is an edge between two nodes u,v iff the disk(u,v) including boundary contains no other points.
- As we will see the Gabriel Graph has interesting properties.

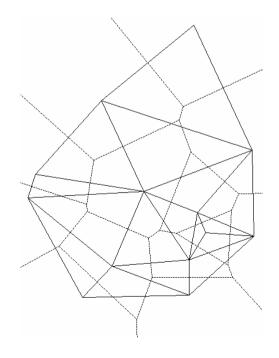




Delaunay Triangulation

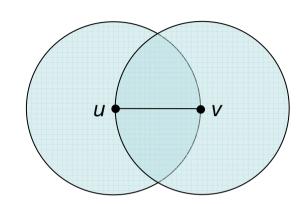
- Let disk(u,v,w) be a disk defined by the three points u,v,w.
- The Delaunay Triangulation (Graph)
 DT(V) is defined as an undirected
 graph (with E being a set of undirected
 edges). There is a triangle of edges
 between three nodes u, v, w iff the
 disk(u, v, w) contains no other points.
- The Delaunay Triangulation is the dual of the Voronoi diagram, and widely used in various CS areas; the DT is planar; the distance of a path (s,...,t) on the DT is within a constant factor of the s-t distance.



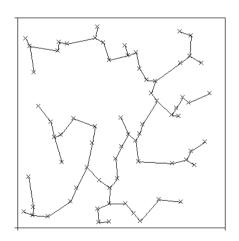


Other planar graphs

- Relative Neighborhood Graph RNG(V)
- An edge e = (u,v) is in the RNG(V) iff there is no node w with (u,w) < (u,v) and (v,w) < (u,v).



- Minimum Spanning Tree MST(V)
- A subset of E of G of minimum weight which forms a tree on V.



Properties of planar graphs

• Theorem 1:

 $MST(V) \subseteq RNG(V) \subseteq GG(V) \subseteq DT(V)$

Corollary:

Since the MST(V) is connected and the DT(V) is planar, all the planar graphs in Theorem 1 are connected and planar.

• Theorem 2:

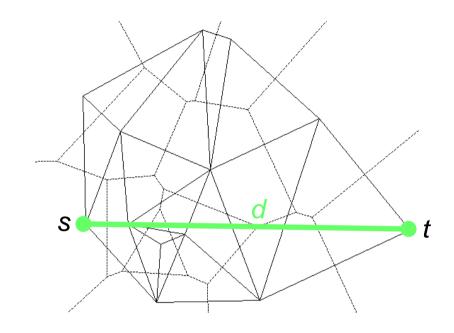
The Gabriel Graph contains the Minimum Energy Path (for any path loss exponent $\alpha \geq 2$)

Corollary:

GG(V) ∩ UDG(V) contains the Minimum Energy Path in UDG(V)

Routing on Delaunay Triangulation?

- Let d be the Euclidean distance of source s and destination t
- Let c be the sum of the distances of the links of the shortest path in the Delaunay Triangulation
- It was shown that $c = \Theta(d)$

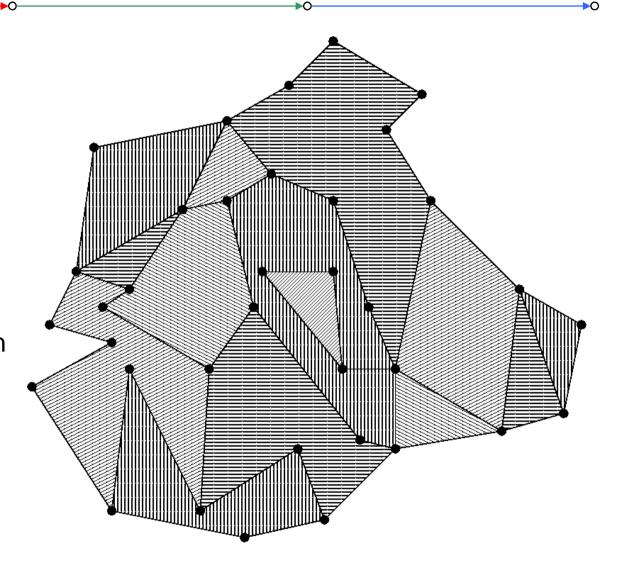


- Three problems:
- 1) How do we find this best route in the DT? With flooding?!?
- 2) How do we find the DT at all in a distributed fashion?
- 3) Worse: The DT contains edges that are not in the UDG, that is, nodes that cannot receive each other are "neighbors" in the DT

Breakthrough idea: route on faces

Remember the faces...

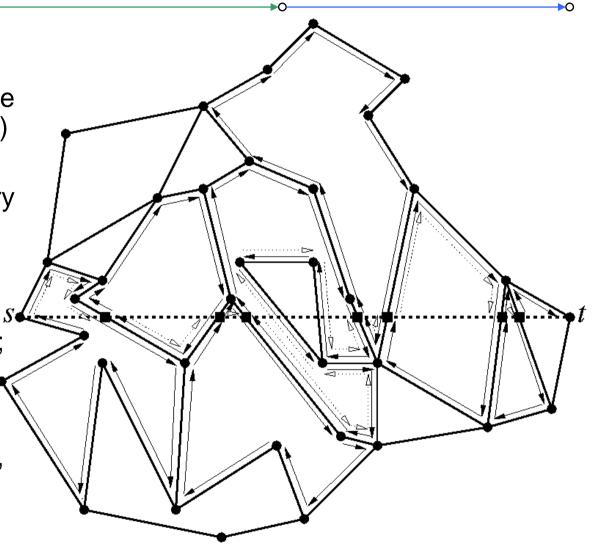
Idea:
 Route along the
 boundaries of
 the faces that
 lie on the
 source—destination
 line



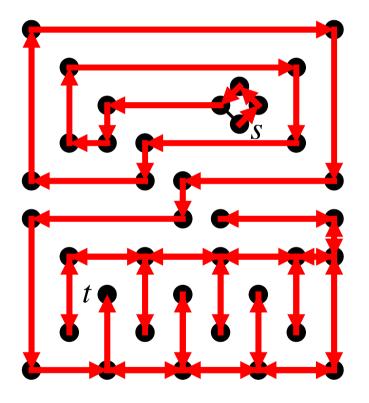
Face Routing

O. Let f be the face incident to the source s, intersected by (s,t)

of f; remember the point p where the boundary intersects with (s,t) so which is nearest to t; after traversing the whole boundary, go back to p, switch the face, and repeat 1 until you hit destination t.

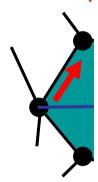


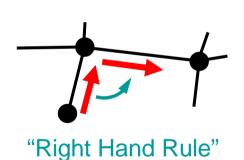
Face Routing Works on Any Graph



Face Routing Properties

- All necessary information is stored in the message
 - Source and destination positions
 - Point of transition to next face
- Completely local:
 - Knowledge about direct neighbors' positions sufficient
 - Faces are implicit





- Planarity of graph is computed locally (not an assumption)
 - Computation for instance with Gabriel Graph

Face routing is correct

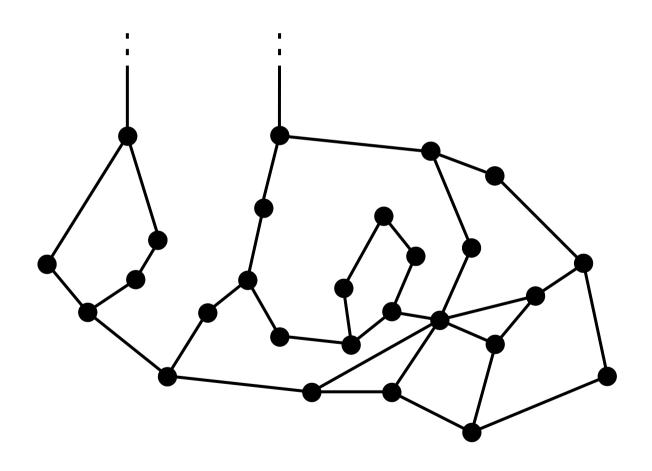
- Theorem: Face routing terminates on any simple planar graph in O(n) steps, where n is the number of nodes in the network
- Proof: A simple planar graph has at most 3n–6 edges. You leave each face at the point that is closest to the destination, that is, you never visit a face twice, because you can order the faces that intersect the source—destination line on the exit point. Each edge is in at most 2 faces. Therefore each edge is visited at most 4 times. The algorithm terminates in O(n) steps.

Is there something better than Face Routing?

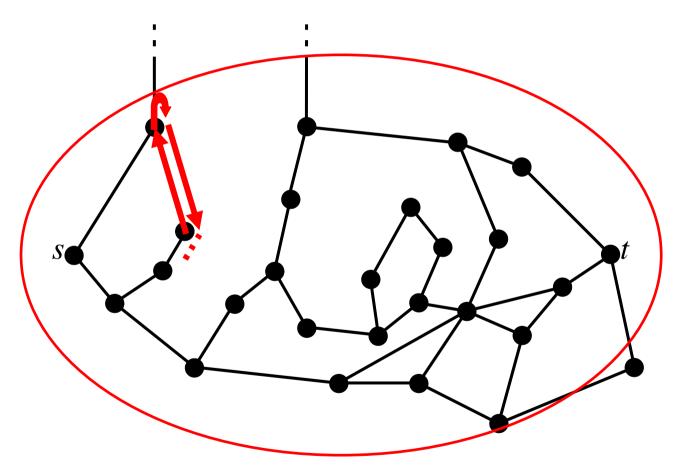
- How to improve face routing? A proposal called "Face Routing 2"
- Idea: Don't search a whole face for the best exit point, but take the first (better) exit point you find. Then you don't have to traverse huge faces that point away from the destination.
- Efficiency: Seems to be practically more efficient than face routing.
 But the theoretical worst case is worse O(n²).
- Problem: if source and destination are very close, we don't want to route through all nodes of the network. Instead we want a routing algorithm where the cost is a function of the cost of the best route in the unit disk graph (and independent of the number of nodes).

Face Routing

- Theorem: Face Routing reaches destination in O(n) steps
- But: Can be very bad compared to the optimal route



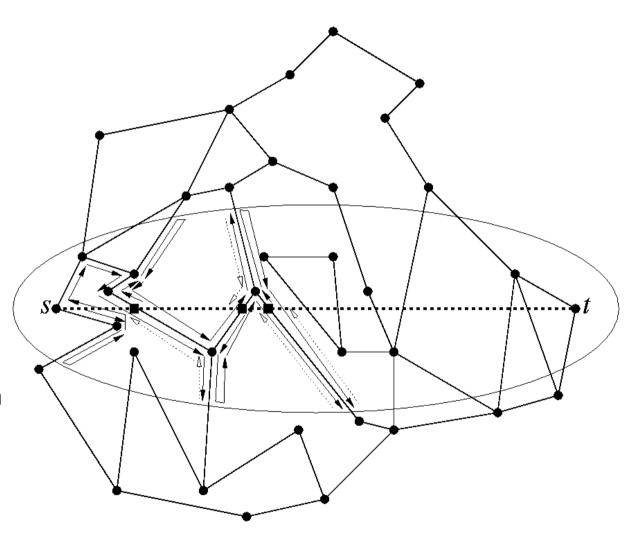
Bounding Searchable Area



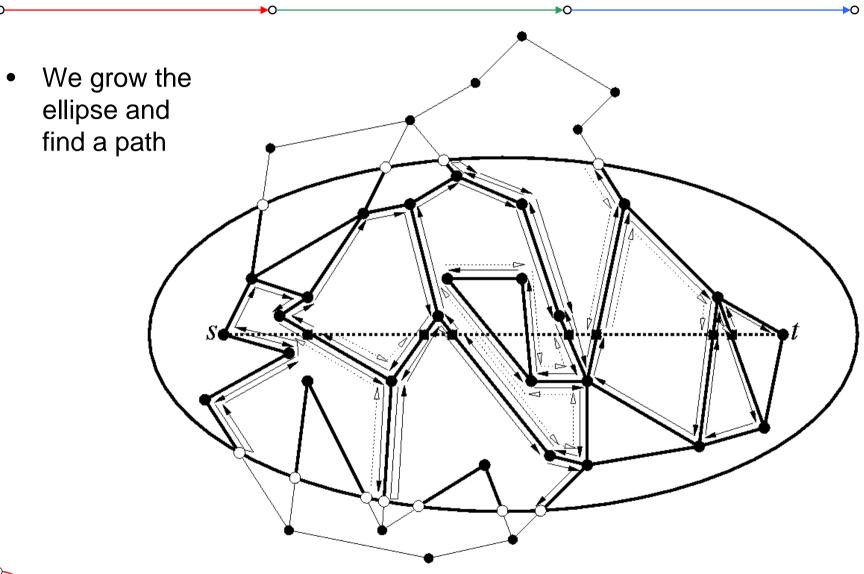
Adaptive Face Routing (AFR)

 Idea: Use face routing together with ad hoc routing trick 1!!

 That is, don't route beyond some radius r by branching the planar graph within an ellipse of exponentially growing size.



AFR Example Continued



AFR Pseudo-Code

- 0. Calculate $G = GG(V) \cap UDG(V)$ Set c to be twice the Euclidean source—destination distance.
- Nodes w ∈ W are nodes where the path s-w-t is larger than c. Do face routing on the graph G, but without visiting nodes in W. (This is like pruning the graph G with an ellipse.) You either reach the destination, or you are stuck at a face (that is, you do not find a better exit point.)
- 2. If step 1 did not succeed, double c and go back to step 1.
- Note: All the steps can be done completely locally, and the nodes need no local storage.

The $\Omega(1)$ Model

- We simplify the model by assuming that nodes are sufficiently far apart; that is, there is a constant d_0 such that all pairs of nodes have at least distance d_0 . We call this the $\Omega(1)$ model.
- This simplification is natural because nodes with transmission range
 1 (the unit disk graph) will usually not "sit right on top of each other".
- Lemma: In the $\Omega(1)$ model, all natural cost models (such as the Euclidean distance, the energy metric, the link distance, or hybrids of these) are equal up to a constant factor.
- Remark: The properties we use from the $\Omega(1)$ model can also be established with a backbone graph construction.

Analysis of AFR in the $\Omega(1)$ model

- Lemma 1: In an ellipse of size c there are at most O(c²) nodes.
- Lemma 2: In an ellipse of size c, face routing terminates in O(c²) steps, either by finding the destination, or by not finding a new face.
- Lemma 3: Let the optimal source—destination route in the UDG have cost c*. Then this route c* must be in any ellipse of size c* or larger.
- Theorem: AFR terminates with cost O(c*2).
- Proof: Summing up all the costs until we have the right ellipse size is bounded by the size of the cost of the right ellipse size.

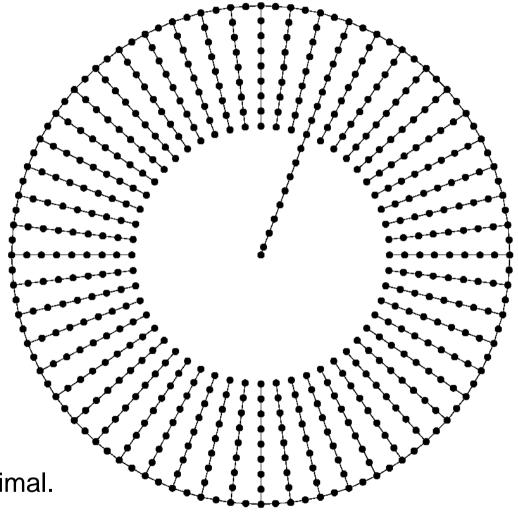
Lower Bound

 The network on the right constructs a lower bound.

 The destination is the center of the circle, the source any node on the ring.

Finding the right chain costs Ω(c*2),
 even for randomized algorithms

 Theorem: AFR is asymptotically optimal.



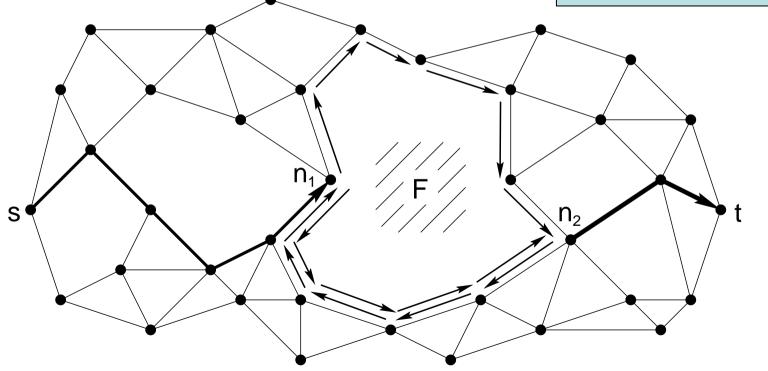
Non-geometric routing algorithms

- In the $\Omega(1)$ model, a standard flooding algorithm enhanced with trick 1 will (for the same reasons) also cost $O(c^{*2})$.
- However, such a flooding algorithm needs O(1) extra storage at each node (a node needs to know whether it has already forwarded a message).
- Therefore, there is a trade-off between O(1) storage at each node or that nodes are location aware, and also location aware about the destination. This is intriguing.

GOAFR - Greedy Other Adaptive Face Routing

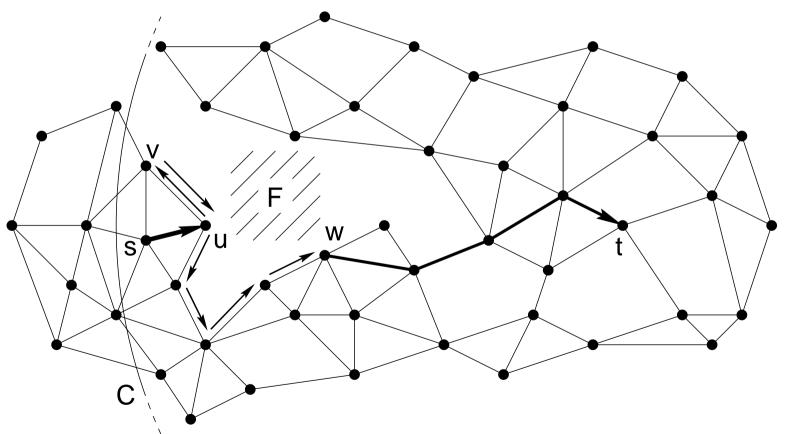
- Back to geometric routing...
- AFR Algorithm is not very efficient (especially in dense graphs)
- Combine Greedy and (Other Adaptive) Face Routing
 - Route greedily as long as possible
 - Circumvent "dead ends" by use of face routing
 - Then route greedily again

Other AFR: In each face proceed to node closest to destination



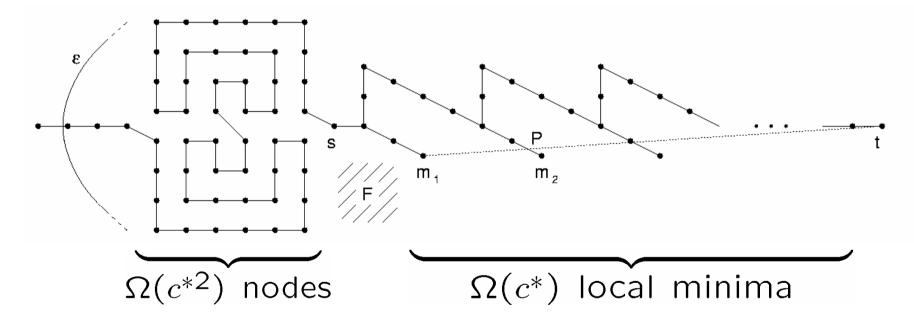
GOAFR+

- GOAFR+ improvements:
 - Early fallback to greedy routing
 - (Circle centered at destination instead of ellipse)



Early Fallback to Greedy Routing?

- We could fall back to greedy routing as soon as we are closer to t than the local minimum
- But:



• "Maze" with $\Omega(c^{*2})$ edges is traversed $\Omega(c^*)$ times $\to \Omega(c^{*3})$ steps

GOAFR - Greedy Other Adaptive Face Routing

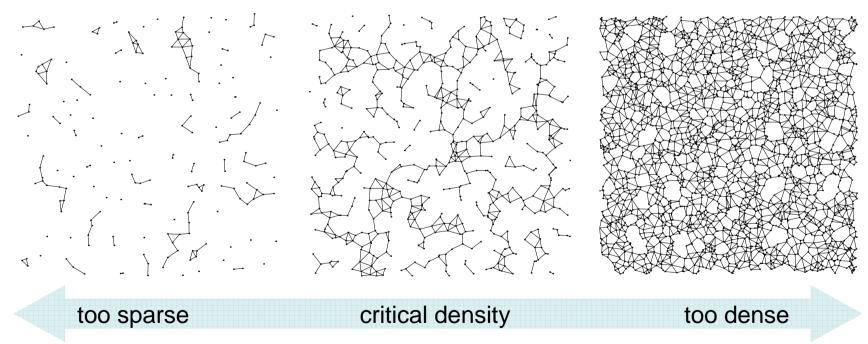
- Early fallback to greedy routing:
 - Use counters p and q. Let u be the node where the exploration of the current face F started
 - p counts the nodes closer to t than u
 - q counts the nodes not closer to t than u
 - Fall back to greedy routing as soon as $p > \sigma \cdot q$ (constant $\sigma > 0$)

Theorem: GOAFR is still asymptotically worst-case optimal... ... and it is efficient in practice, in the average-case.

- What does "practice" mean?
 - Usually nodes placed uniformly at random

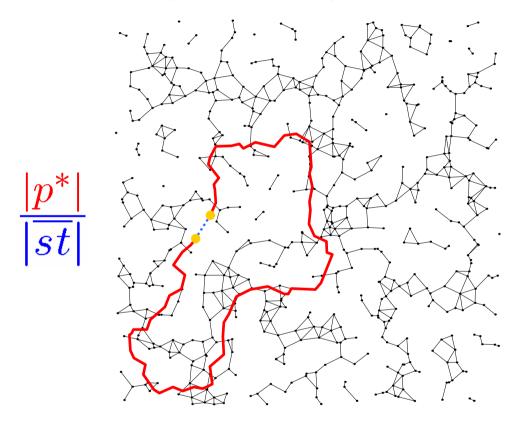
Average Case

- Not interesting when graph not dense enough
- Not interesting when graph is too dense
- Critical density range ("percolation")
 - Shortest path is significantly longer than Euclidean distance



Critical Density: Shortest Path vs. Euclidean Distance

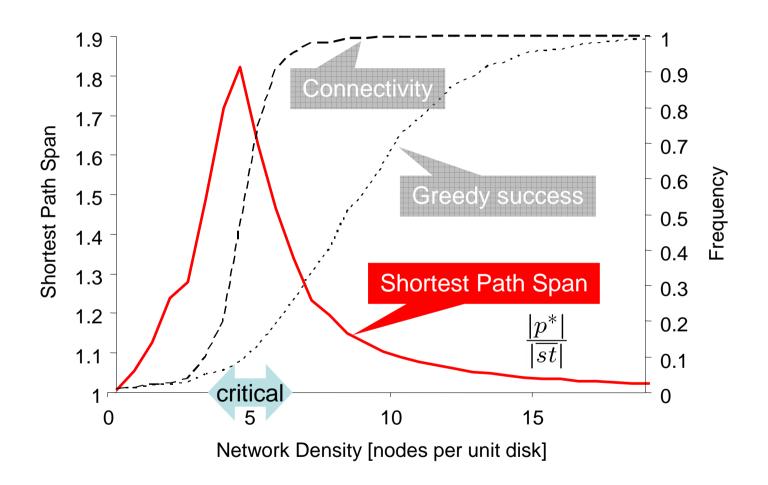
• Shortest path is significantly longer than Euclidean distance



 Critical density range mandatory for the simulation of any routing algorithm (not only geographic)

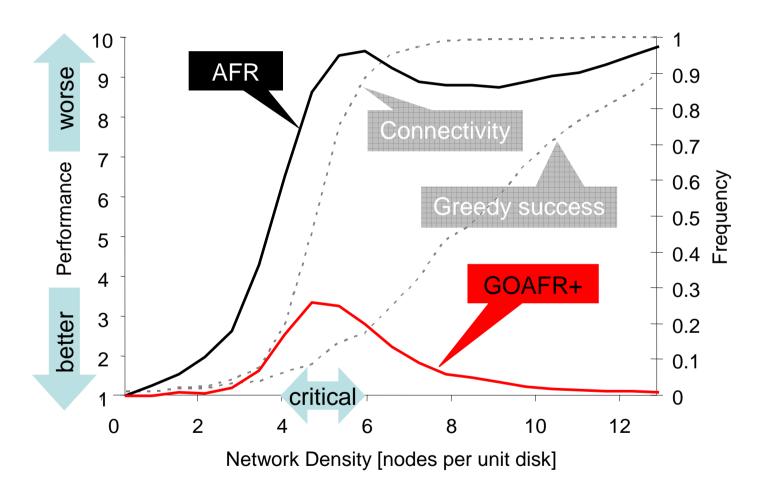
>O

Randomly Generated Graphs: Critical Density Range



>O

Simulation on Randomly Generated Graphs



▶O

A Word on Performance

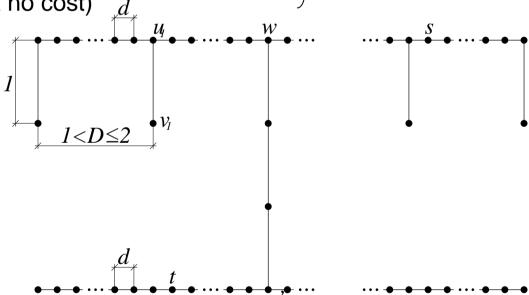
- What does a performance of 3.3 in the critical density range mean?
- If an optimal path (found by Dijkstra) has cost c, then GOAFR+ finds the destination in 3.3.c steps.
- It does *not* mean that the *path* found is 3.3 times as long as the optimal path! The path found can be much smaller...
- Remarks about cost metrics
 - In this lecture "cost" c = c hops
 - There are other results, for instance on distance/energy/hybrid metrics
 - In particular: With energy metric there is no competitive geometric routing algorithm

Energy Metric Lower Bound

Example graph: k "stalks", of which only one leads to t

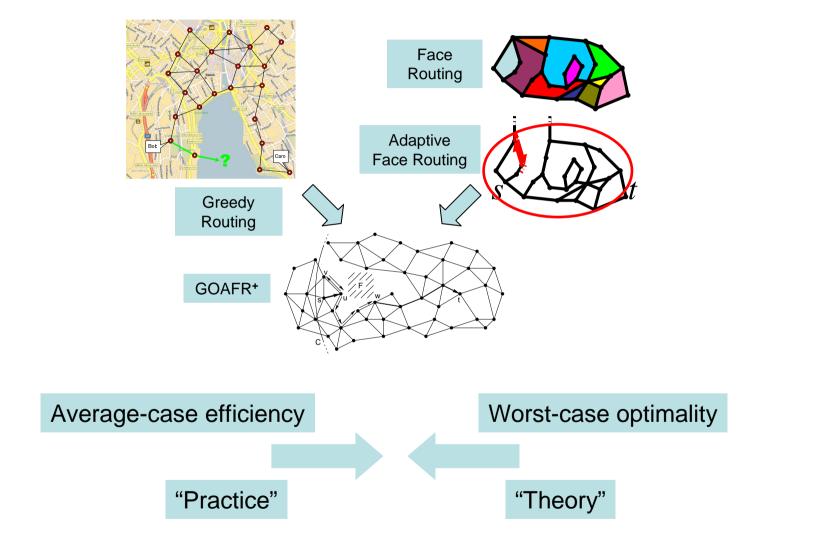
- any deterministic (randomized) geometric routing algorithm A has to visit all k (at least k/2) "stalks"
- optimal path has constant cost c* (covering a constant distance at almost no cost)

$$\lim_{k \to \infty} \frac{c(A)}{c^*} = \infty$$



With energy metric there is no competitive geometric routing algorithm

GOAFR: Summary



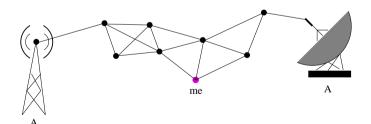
>O

Routing with and without position information

- Without position information:
 - Flooding
 - → does not scale
 - Distance Vector Routing
 - → does not scale
 - Source Routing
 - increased per-packet overhead
 - no theoretical results, only simulation
- With position information:
 - Greedy Routing
 - → may fail: message may get stuck in a "dead end"
 - Geometric Routing
 - → It is assumed that each node knows its position

Obtaining Position Information

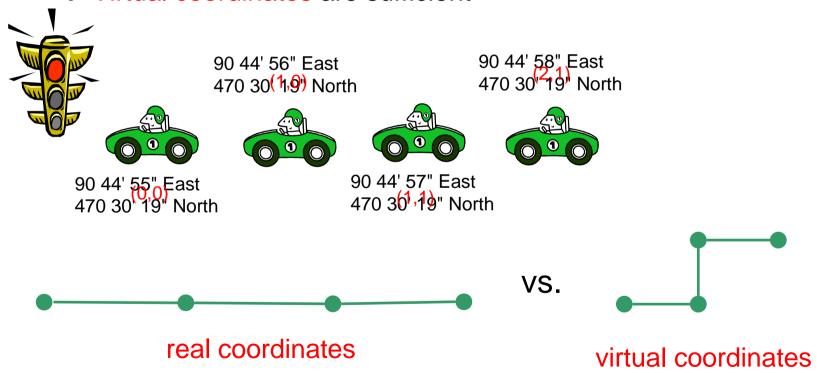
- Attach GPS to each sensor node
 - Often undesirable or impossible
 - GPS receivers clumsy, expensive, and energy-inefficient
- Equip only a few designated nodes with a GPS
 - Anchor (landmark) nodes have GPS
 - Non-anchors derive their position through communication (e.g., count number of hops to different anchors)



Anchor density determines quality of solution

What about no GPS at all?

- In absence of GPS-equipped anchors...
 - → ...nodes are clueless about real coordinates.
- For many applications, real coordinates are not necessary
 - → Virtual coordinates are sufficient

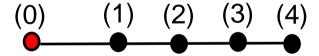


What are "good" virtual coordinates?

- Given the connectivity information for each node and knowing the underlying graph is a UDG find virtual coordinates in the plane such that all connectivity requirements are fulfilled, i.e. find a realization (embedding) of a UDG:
 - each edge has length at most 1
 - between non-neighbored nodes the distance is more than 1
- Finding a realization of a UDG from connectivity information only is NP-hard...
 - [Breu, Kirkpatrick, Comp.Geom.Theory 1998]
- ...and also hard to approximate
 - [Kuhn, Moscibroda, Wattenhofer, DIALM 2004]

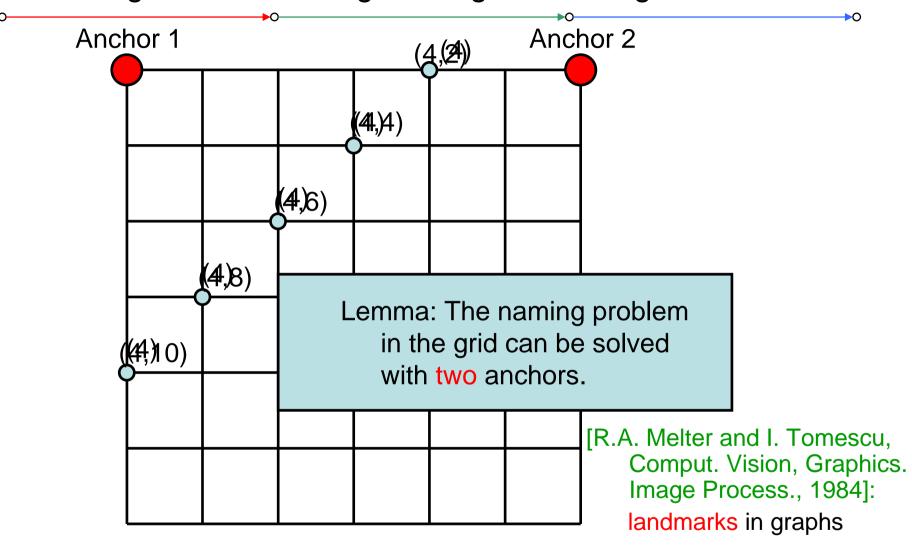
Geometric Routing without Geometry

- For many applications, like routing, finding a realization of a UDG is not mandatory
- Virtual coordinates merely as infrastructure for geometric routing
- → Pseudo geometric coordinates:
 - Select some nodes as anchors: a₁,a₂, ..., a_k
 - Coordinate of each node u is its hop-distance to all anchors: $(d(u,a_1),d(u,a_2),...,d(u,a_k))$

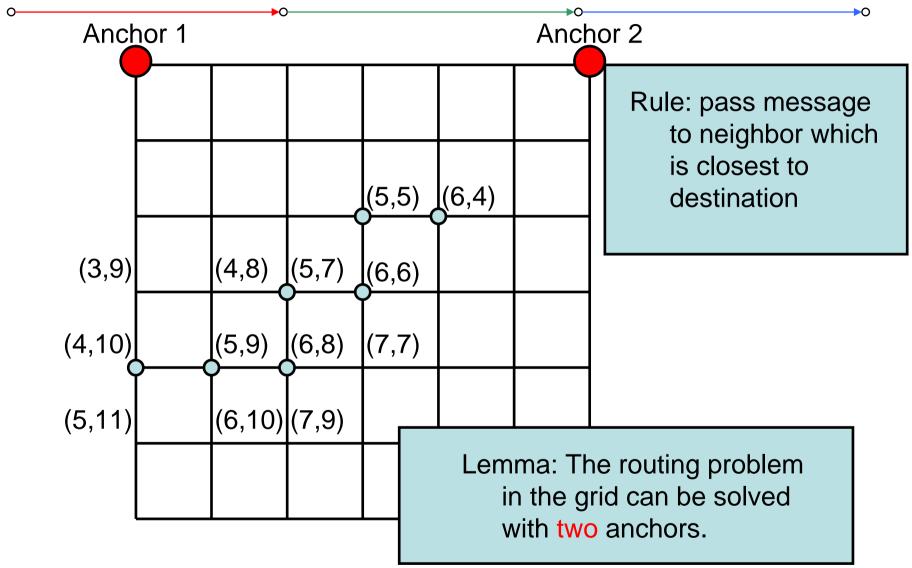


- Requirements:
 - each node uniquely identified: Naming Problem
 - routing based on (pseudo geometric) coordinates possible: Routing Problem

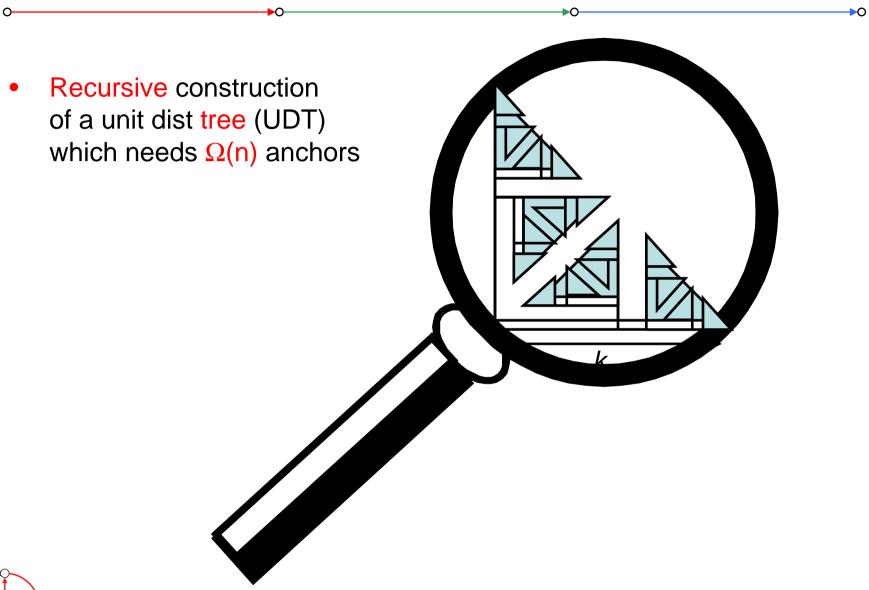
Pseudo-geometric routing in the grid: Naming



Pseudo-geometric routing in the grid: Routing

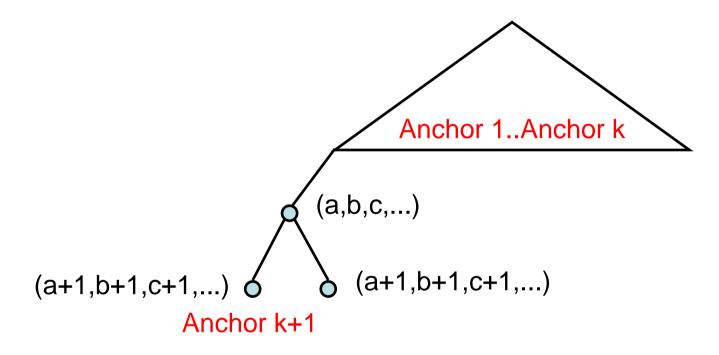


Problem: UDG is usually not a grid



Pseudo-geometric routing in the UDT: Naming

Leaf-siblings can only be distinguished if one of them is an anchor:



Lemma: in a unit disk tree with n nodes there are up to $\Theta(n)$ leaf-siblings. That is, we need to $\Theta(n)$ anchors.

Pseudo-geometric routing in the ad hoc networks

- Naming and routing in grid quite good, in previous UDT example very bad
- Real-world ad hoc networks are very probable neither perfect grids nor naughty unit disk trees

