Chapter 6
GEOMETRIC
ROUTING
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Overview — Geometric Routing

e}

» Geometric routing
» Greedy geometric routing

» Euclidean and planar graphs
e Unit disk graph
» Gabriel graph and other planar graphs

» Face Routing
* Greedy and Face Routing

» Geometric Routing without Geometry
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Geometric (geographic, directional, position-based) routing

« ...even with all the tricks there will be flooding every now and then.

« In this chapter we will assume that the nodes are location aware
(they have GPS, Galileo, or an ad-hoc way to figure out their
coordinates), and that we know where the destination is.

e Thenwe
simply route
towards the
destination
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Geometric routing

o

» Problem: What if there is no path in the right direction?

» We need a guaranteed way to reach a destination even in the case
when there is no directional path...

» Hack: as in flooding
nodes keep track
of the messages
they have already
seen, and then they
backtrack* from there

*backtracking? Does this
mean that we need a stack?!?
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Geo-Routing: Strictly Local
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Greedy Geo-Routing?
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What is Geographic Routing?

o

» A.k.a. geometric, location-based, position-based, etc.

¢ Each node knows its own position and position of neighbors
e Source knows the position of the destination

» No routing tables stored in nodes!

» Geographic routing makes sense
— Own position: GPS/Gallileo, local positioning algorithms
— Destination: Geocasting, location services, source routing++
— Learn about ad-hoc routing in general
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Greedy routing

Examples why greedy algorithms fall

O >0
+ Greedy routing We greedily route to the neighbor
looks promising. which is closest to the destination: | ;
But both neighbors of x are ‘
not closer to destination D
* Maybe there is a
way to choose the
next neighbor
and a particular
graph where we 5
always reach the Also the best angle approach .
destination? m|ght fail, evenin a tnangulatlon.
’ if, in the example on the right, )
you always follow the edge with
the narrowest angle to destination
t, you will forward on a loop .
Vg, Wo, Vyq, Wy, ..., Vg, W3, Vg, ..
M
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Euclidean and Planar Graphs Unit disk graph
o o »0

» Euclidean: Points in the plane, with coordinates
e Planar: can be drawn without “edge crossings” in a plane

» Euclidean planar graphs (planar embeddings) simplify geometric
routing.
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We are given a set V of nodes in the plane (points with coordinates).

The unit disk graph UDG(V) is defined as an undirected graph (with
E being a set of undirected edges). There is an edge between two
nodes u,v iff the Euclidean distance between u and v is at most 1.

Think of the unit distance as the maximum transmission range.

We assume that the unit disk graph

UDG is connected (that is, there is a b " i e

path between each pair of nodes) |72 .SV N

The unit disk graph has many edges. | : :

Can we drop some edges in the UDG W P i ,.",,,

to reduced complexity and interference? A 2 .
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Planar graphs

o}

» Definition: A planar graph is a graph
that can be drawn in the plane such
that its edges only intersect at their
common end-vertices.

« Kuratowski's Theorem: A graph is planar iff it contains no subgraph
that is edge contractible to Ky or K 3.

» Euler’'s Polyhedron Formula: A connected
planar graph with n nodes, m edges, and f
faceshasn—-m+f=2.

* Right: Example with 9 vertices,14 edges,
and 7 faces (the yellow “outside” face is
called the infinite face)

» Theorem: A simple planar graph with
n nodes has at most 3n-6 edges, for n>3.

O
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Gabriel Graph

o}

» Letdisk(u,v) be a disk with diameter (u,v)
that is determined by the two points u,v.
» The Gabriel Graph GG(V) is defined
as an undirected graph (with E being u
a set of undirected edges). There is an
edge between two nodes u,v iff the
disk(u,v) including boundary contains no
other points.

» As we will see the Gabriel Graph
has interesting properties.
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Delaunay Triangulation

o

» Let disk(u,v,w) be a disk defined by

the three points u,v,w. \
e The Delaunay Triangulation (Graph) P

DT(V) is defined as an undirected ) 4 w

graph (with E being a set of undirected
edges). There is a triangle of edges
between three nodes u,v,w iff the
disk(u,v,w) contains no other points.

e The Delaunay Triangulation is the
dual of the Voronoi diagram, and
widely used in various CS areas;
the DT is planar; the distance of a
path (s,...,t) on the DT is within a
constant factor of the s-t distance.
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Other planar graphs

Relative Neighborhood Graph RNG(V)

* Anedge e = (u,v) is in the RNG(V) iff
there is no node w with (u,w) < (u,v)
and (v,w) < (u,v).

e Minimum Spanning Tree MST(V)

» A subset of E of G of minimum weight
which forms a tree on V.

N\
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Properties of planar graphs

Routing on Delaunay Triangulation?

o »0
e Theorem 1: » Let d be the Euclidean
MST(V) ORNG(V) O GG(V) ODT(V) distance of source s and
destination t
. Corollary: . :_ettc be thef::,rL]Jml_oLthef
Since the MST(V) is connected and the DT(V) is planar, all the r:S arr:ces 0 eh',n sho
planar graphs in Theorem 1 are connected and planar. the shortest pat In t, € t
Delaunay Triangulation
o 1t hown that ¢ =
. Theorem 2- was shown that ¢ = ©(d)
The Gabriel Graph contains the Minimum Energy Path
(for any path loss exponent a > 2) * Three problems:
1) How do we find this best route in the DT? With flooding?!?
« Corollary: 2) How do we find the DT at all in a distributed fashion?
GG(V) N UDG(V) contains the Minimum Energy Path in UDG(V) 3) Worse: The DT contains edges that are not in the UDG, that is,
nodes that cannot receive each other are “neighbors” in the DT
A )
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Breakthrough idea: route on faces Face Routing
o O

o

« Remember the
faces...

¢ |dea:
Route along the
boundaries of

A

NEE

the faces that =
lie on the //\ Al
source—destination ////§ ——

line

N

I
-~

N
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0. Let f be the face
incident to the source
s, intersected by (s,t)

1. Explore the boundary
of f; remember the
point p where the
boundary
intersects with (s,t) s
which is nearest to t;
after traversing
the whole
boundary, go back
to p, switch the face,
and repeat 1 until
you hit destination t.




Face Routing Works on Any Graph

o}

[ r
[ [ =
t
wig O
M
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Face Routing Properties

O O
* All necessary information is stored in the message
— Source and destination positions
— Point of transition to next face

» Completely local:
— Knowledge about direct neighbors’ positions sufficient
— Faces are implicit

“
1—
“Right Hand Rule”

» Planarity of graph is computed locally (not an assumption)
— Computation for instance with Gabriel Graph
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Face routing is correct

o

» Theorem: Face routing terminates on any simple planar graph in
O(n) steps, where n is the number of nodes in the network

« Proof: A simple planar graph has at most 3n—-6 edges. You leave
each face at the point that is closest to the destination, that is, you
never visit a face twice, because you can order the faces that
intersect the source—destination line on the exit point. Each edge is
in at most 2 faces. Therefore each edge is visited at most 4 times.
The algorithm terminates in O(n) steps.
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Is there something better than Face Routing?

O >0

» How to improve face routing? A proposal called “Face Routing 2"

» Idea: Don’t search a whole face for the best exit point, but take the
first (better) exit point you find. Then you don’t have to traverse huge
faces that point away from the destination.

» Efficiency: Seems to be practically more efficient than face routing.
But the theoretical worst case is worse — O(n?).

» Problem: if source and destination are very close, we don’t want to
route through all nodes of the network. Instead we want a routing
algorithm where the cost is a function of the cost of the best route in
the unit disk graph (and independent of the number of nodes).

N\
O
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Face Routing

o}

» Theorem: Face Routing reaches destination in O(n) steps
e But: Can be very bad compared to the optimal route

s
O

{ i‘, - _
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Bounding Searchable Area

e}
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A
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Adaptive Face Routing (AFR)

o

* Idea: Use
face routing
together with
ad hoc routing
trick 11!

e Thatis, don't
route beyond
some radius
r by branching
the planar graph
within an ellipse
of exponentially
growing size.
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AFR Example Continued

o

*  We grow the
ellipse and
find a path

N\

O
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AFR Pseudo-Code

o}

0. Calculate G = GG(V) N UDG(V)
Set c to be twice the Euclidean source—destination distance.

1. Nodes w € W are nodes where the path s-w-t is larger than c. Do
face routing on the graph G, but without visiting nodes in W. (This is
like pruning the graph G with an ellipse.) You either reach the
destination, or you are stuck at a face (that is, you do not find a
better exit point.)

2. If step 1 did not succeed, double ¢ and go back to step 1.

* Note: All the steps can be done completely locally,
and the nodes need no local storage.

s
O

{ i., - _
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The Q(1) Model

* We simplify the model by assuming that nodes are sufficiently far
apart; that is, there is a constant d, such that all pairs of nodes have
at least distance d,. We call this the Q(1) model.

» This simplification is natural because nodes with transmission range
1 (the unit disk graph) will usually not “sit right on top of each other”.

* Lemma: In the Q(1) model, all natural cost models (such as the
Euclidean distance, the energy metric, the link distance, or hybrids
of these) are equal up to a constant factor.

* Remark: The properties we use from the Q(1) model can also be
established with a backbone graph construction.
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Analysis of AFR in the Q(1) model

o

« Lemma 1: In an ellipse of size ¢ there are at most O(c?) nodes.

+ Lemma 2: In an ellipse of size c, face routing terminates in O(c?)
steps, either by finding the destination, or by not finding a new face.

* Lemma 3: Let the optimal source—destination route in the UDG
have cost c*. Then this route c* must be in any ellipse of size c* or
larger.

e Theorem: AFR terminates with cost O(c*?).

» Proof: Summing up all the costs until we have the right ellipse size
is bounded by the size of the cost of the right ellipse size.
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Lower Bound

O >0

» The network on the right
constructs a lower bound.
» The destination is the
center of the circle,
the source any node
on the ring.

» Finding the right chain
costs Q(c*?),
even for randomized
algorithms

* Theorem:
AFR is asymptotically optimal.

O
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Non-geometric routing algorithms

o}

* Inthe Q(1) model, a standard flooding algorithm enhanced with trick
1 will (for the same reasons) also cost O(c*?).

» However, such a flooding algorithm needs O(1) extra storage at
each node (a node needs to know whether it has already forwarded

a message).

» Therefore, there is a trade-off between O(1) storage at each node or
that nodes are location aware, and also location aware about the
destination. This is intriguing.

s
O

GOAFR — Greedy Other Adaptive Face Routing

e}

» Back to geometric routing...
* AFR Algorithm is not very efficient (especially in dense graphs)
« Combine Greedy and (Other Adaptive) Face Routing

— Route greedily as long as possi
— Circumvent “dead ends” by use of face routing
— Then route greedily again

Other AFR: In each
face proceed to node
closest to destination

AL /
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GOAFR+ Early Fallback to Greedy Routing?
o o »O
* GOAFR+ improvements: » We could fall back to greedy routing as soon as we are closer to t
— Early fallback to greedy routing than the local minimum
— (Circle centered at destination instead of ellipse) e But:
e e
/
] 7 //F/¢ m, 2
1T o0
W A\ ~~ >4
Q(c*2) nodes Q(c*) local minima
* “Maze” with Q(c*?) edges is traversed Q(c*) times — Q(c*3) steps
M M
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GOAFR — Greedy Other Adaptive Face Routing

o} e}

» Early fallback to greedy routing:
— Use counters p and g. Let u be the node where the exploration of the
current face F started
¢ p counts the nodes closer to t than u
¢ g counts the nodes not closer to t than u
— Fall back to greedy routing as soon as p > o - g (constant ¢ > 0)

Theorem: GOAFR is still asymptotically worst-case optimal...
...and it is efficient in practice, in the average-case.

* What does “practice” mean?
— Usually nodes placed uniformly at random

Average Case

o}

» Not interesting when graph not dense enough
« Not interesting when graph is too dense

« Critical density range (“percolation”)
— Shortest path is significantly longer than Euclidean distance

too sparse critical density too dense
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Critical Density: Shortest Path vs. Euclidean Distance Randomly Generated Graphs: Critical Density Range
o o »O
« Shortest path is significantly longer than Euclidean distance
N 7 - Q- 1.9 1 P et i
- 1.8 1 ’ 09
e 17 :0-8
& 161 or
£ roe6 @
5 157 &
B 1.4 05 &
% : F04 T
5 137 Shortest Path Span L 0.3
1.2 1 Ip*| F0.2
111 S |st| Fo1
1 —— critical : "0
. . . . . 0 5 10 15
. Crltlc_al density range manda?ory for the simulation of any routing Network Density [nodes per unit disk]
algorithm (not only geographic)
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Simulation on Randomly Generated Graphs

o} e}

A Word on Performance

o}

» What does a performance of 3.3 in the critical density range mean?

107 R r1
2 g AFR T 0.9 . .
= “Los » If an optimal path (found by Dijkstra) has cost c,
S 8 : then GOAFR+ finds the destination in 3.3-c steps.
] T 0.7
§ ! 106 &
g 6] Los g » It does not mean that the path found is 3.3 times as long as the
S 51 0'4 g optimal path! The path found can be much smaller...
[0} T U (TR
= oa +o03
5 3 1oz » Remarks about cost metrics
§ 2 lo1 — In this lecture “cost” ¢ = ¢ hops
| . A -;:ritical o — There are other results, for instance on distance/energy/hybrid metrics
0 2 4 6 8 10 12 — In particular: With energy metric there is no competitive geometric
Network Density [nodes per unit disk] routing algorithm
s o N\ o
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Energy Metric Lower Bound
o o} o
Example graph: k “stalks”, of which only one leads to t
— any deterministic (randomized)
. . . Face
geo_m_etrlc routing algorltr:m A h?s . C(A) Routing
to visit all k (at least k/2) “stalks || m — =
— i * C
optimal path has constant cost ¢ K— 00 pom—
(covering a constant distance at Face Routing
almost no cost)
mu w s Greedy
> oo --- > o o -0 09 - e Routing
1
v GOAFR*
1<D<2
Average-case efficiency Worst-case optimality
d
et
., — With energy metric there is no competitive geometric routing algorithm . “Practice” “Theory”
O O
./i ... ./i O O
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Routing with and without position information

* Without position information:
— Flooding
- does not scale

— Distance Vector Routing
-> does not scale

— Source Routing
 increased per-packet overhead
* no theoretical results, only simulation

e With position information:
— Greedy Routing
- may fail: message may get stuck in a “dead end”
— Geometric Routing
- It is assumed that each node knows its position

N\

O
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Obtaining Position Information

o}

» Attach GPS to each sensor node
— Often undesirable or impossible
— GPS receivers clumsy, expensive, and energy-inefficient

» Equip only a few designated nodes with a GPS
— Anchor (landmark) nodes have GPS

— Non-anchors derive their position through communication
(e.g., count number of hops to different anchors)

(
<£§ i[f £ Anchor density determines
A quality of solution

@

as |
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What about no GPS at all?

o

* In absence of GPS-equipped anchors...
- ...nodes are clueless about real coordinates.

» For many applications, real coordinates are not necessary
- Virtual coordinates are sufficient

<
90 44' 56" East 90 44' 58" East

< g >~ 470 30(1.6) North 470 30?% North

90 44' 55" East 90 44' 57" East

47030'T 5 North 470 36-19" North

—0
VS.
o L @ L o—
real coordinates virtual coordinates

B\
O
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What are ,good* virtual coordinates?

o

» Given the connectivity information for each node and knowing the
underlying graph is a UDG find virtual coordinates in the plane
such that all connectivity requirements are fulfilled, i.e. find a
realization (embedding) of a UDG:

— each edge has length at most 1
— between non-neighbored nodes the distance is more than 1

» Finding a realization of a UDG from connectivity information only is
NP-hard...
— [Breu, Kirkpatrick, Comp.Geom.Theory 1998]

» ...and also hard to approximate
— [Kuhn, Moscibroda, Wattenhofer, DIALM 2004]

N\
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Geometric Routing without Geometry

o}

« For many applications, like routing, finding a realization of a UDG is
not mandatory
» Virtual coordinates merely as infrastructure for geometric routing

- Pseudo geometric coordinates:
— Select some nodes as anchors: a,,a,, ..., a,
— Coordinate of each node u is its hop-distance to all anchors:
(d(u,a,),d(u,a,),..., d(u,a)

© @O @ 6 @
o—o—o 0
* Requirements:

— each node uniquely identified: Naming Problem
— routing based on (pseudo geometric) coordinates possible: Routing

Pseudo-geometric routing in the grid: Naming

o}

Anchor 1 Anchor 2
32 @

ay)

J

O

4)6)

O
\

O
\

4)8)
Lemma: The naming problem
SEQIO) in the grid can be solved
) with two anchors.

[R.A. Melter and |. Tomescu,
Comput. Vision, Graphics.
Image Process., 1984]:

landmarks in graphs

Problem
M ()
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Pseudo-geometric routing in the grid: Routing Problem: UDG is usually not a grid
o o} o »0
Anchor 1 Anchor 2
Rule: pass message . Recurs_lve_ construction
: ; of a unit dist tree (UDT)
to neighbor which hich ds O h
P — which needs Q(n) anchors
1(5,5) 1(6,4) destination
(3,9) (4,8) ,\(5'7) 1(6.6)
(4,10)( 1(5.9) [(6,8) [(7.7)
(5,11) (6,10)((7.9)
Lemma: The routing problem
in the grid can be solved
with two anchors.
™ M
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Pseudo-geometric routing in the UDT: Naming

o}

» Leaf-siblings can only be distinguished if one of them is an anchor:

Anchor 1..Anchor k

(a,b,c,...)

(a+1,b+1,c+1,..) (a+1,b+1,c+1,..)
Anchor k+1

Lemma: in a unit disk tree with n nodes
there are up to @&n) leaf-siblings.
That is, we need to &(n) anchors.

O
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Pseudo-geometric routing in the ad hoc networks

O
« Naming and routing in grid quite good, in previous UDT example
very bad
« Real-world ad hoc networks are very probable neither perfect grids
nor naughty unit disk trees

Truth is somewhere in

N
AIN
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