Chapter 4 **WIRELESS LAN** Distributed Mobile Computing Computing Group Winter 2005 / 2006

Overview

- Design goals
- Characteristics
- IEEE 802.11
 - Architecture, Protocol
 - PHY, MAC
 - Cyclic Redundancy codes

▶0

- Roaming, Security
- a, b, g, etc.
- Bluetooth, RFID, etc.

⊳0

- Global, seamless operation
- Low power consumption for battery use
- No special permissions or licenses required
- Robust transmission technology
- Simplified spontaneous cooperation at meetings
- Easy to use for everyone, simple management
- Interoperable with wired networks
- Security (no one should be able to read my data), privacy (no one should be able to collect user profiles), safety (low radiation)
- Transparency concerning applications and higher layer protocols, but also location awareness if necessary

- + Very flexible (economical to scale)
- + Ad-hoc networks without planning possible
- + (Almost) no wiring difficulties (e.g. historic buildings, firewalls)
- + More robust against disasters or users pulling a plug
- Low bandwidth compared to wired networks (10 vs. 100[0] Mbit/s)
- Many proprietary solutions, especially for higher bit-rates, standards take their time
- Products have to follow many national restrictions if working wireless, it takes a long time to establish global solutions (IMT-2000)
- Security
- Economy

Infrastructure vs. ad-hoc networks

802.11 – Architecture of an infrastructure network

- Station (STA)
 - terminal with access mechanisms to the wireless medium and radio contact to the access point
- Basic Service Set (BSS)
 - group of stations using the same radio frequency
- Access Point
 - station integrated into the wireless
 LAN and the distribution system
- Portal
 - bridge to other (wired) networks
- Distribution System
 - interconnection network to form one logical network (ESS: Extended Service Set) based on several BSS

802.11 – Architecture of an ad-hoc network

- Direct communication within a limited range
 - Station (STA): terminal with access mechanisms to the wireless medium
 - [Independent] Basic Service Set ([I]BSS):

group of stations using the same radio frequency

 You may use SDM or FDM to establish several BSS.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

⊳0

802.11 – Protocol architecture

802.11 – The lower layers in detail

- PMD (Physical Medium Dependent)
 - modulation, coding
- PLCP (Physical Layer Convergence Protocol)
 - clear channel assessment signal (carrier sense)
- PHY Management
 - channel selection, PHY-MIB
- Station Management
 - coordination of all management functions

- MAC
 - access mechanisms
 - fragmentation
 - encryption
- MAC Management
 - Synchronization
 - roaming
 - power management
 - MIB (management information base)

Infrared

- uses IR diodes, diffuse light, multiple reflections (walls, furniture etc.)
- + simple, cheap, available in many mobile devices
- + no licenses needed
- + simple shielding possible
- interference by sunlight, heat sources etc.
- many things shield or absorb IR light
- low bandwidth
- Example: IrDA (Infrared Data Association) interface available everywhere

Radio

- typically using the license free ISM band at 2.4 GHz
- + experience from wireless WAN and mobile phones can be used
- coverage of larger areas possible (radio can penetrate walls, furniture etc.)
- very limited license free frequency bands
- shielding more difficult, interference with other electrical devices
- Examples: HIPERLAN, Bluetooth

802.11 - Physical layer (802.11legacy)

- 3 versions: 2 radio (2.4 GHz), 1 IR (outdated):
- FHSS (Frequency Hopping Spread Spectrum)
 - spreading, despreading, signal strength, 1 Mbit/s
 - at least 2.5 frequency hops/s, two-level GFSK modulation
- DSSS (Direct Sequence Spread Spectrum)
 - DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying), DQPSK for 2 Mbit/s (Differential Quadrature PSK)
 - preamble and header of a frame is always transmitted with 1 Mbit/s, rest of transmission 2 (or optionally 1) Mbit/s
 - chipping sequence: Barker code (+-++-++--)
 - max. radiated power 1 W (USA), 100 mW (EU), min. 1mW
- Infrared
 - 850-950 nm, diffuse light,10 m range
 - carrier detection, energy detection, synchronization

- Synchronization
 - synch., gain setting, energy detection, frequency offset compensation

- SFD (Start Frame Delimiter)
 - 1111001110100000
- Signal
 - data rate of the payload (0x0A: 1 Mbit/s DBPSK; 0x14: 2 Mbit/s DQPSK)
- Service (future use, 00: 802.11 compliant)
- Length (length of the payload)
- HEC (Header Error Check)
 - protection of signal, service and length, $x^{16}+x^{12}+x^5+1$

- Polynomes with binary coefficients $b_k x^k + b_{k-1} x^{k-1} + ... + b_0 x^0$
- Order of polynome: max i with $b_i \neq 0$
- Binary coefficients b_i (0 or 1) form a field with operations "+" (XOR) and "¢" (AND).
- The polynomes form a ring R with operations "+" and "¢": (R,+) is an abelian group, (R, ¢) is an associative set, and the distributive law does hold, that is, a¢(b+c) = a¢b+a¢c respectively (b+c)¢a = b¢a+c¢a with a,b,c 2 R.
- Example: $(x^{3}+1)\phi(x^{4}+x+1)$ 1001 ϕ 10011 = $x^{3}\phi(x^{4}+x+1) + 1\phi(x^{4}+x+1)$ = 10011 = $(x^{7}+x^{4}+x^{3}) + (x^{4}+x+1)$ + 10011000 = $x^{7}+x^{3}+x+1$ = 10001011

Cyclic Redundancy Code (CRC): Division

- Generator polynome $G(x) = x^{16}+x^{12}+x^5+1$
- Let the whole header be polynome T(x) (order < 48)
- Idea: fill HEC (CRC) field such that $T(x) \mod G(x) = 0$.
- How to divide with polynomes? Example with G(x) = x²+1 (=101)
 11101100 / 101 = 110110, Remainder 10
 100
 011
 111
 100
 010
- Idea: Fill CRC with remainder when dividing T(x) with HEC=00...0 by G(x). Then calculating and testing CRC is the same operation.

Cyclic Redundancy Code (CRC): Division in Hardware

- Use cyclic shift register r registers, where r is the order of G(x)
- Example

0

$$G(x) = x^{3} + x^{2} + 1$$

Finally the remainder of the division is in the registers

⊳0

Cyclic Redundancy Code (CRC): How to chose G(x)?

- Generator polynome $G(x) = x^{16}+x^{12}+x^5+1$
- Why does G(x) have this complicated form?
- Let E(x) be the transmission errors, that is T(x) = M(x) + E(x)
- $T(x) \mod G(x) = (M(x) + E(x)) \mod G(x)$ = $M(x) \mod G(x) + E(x) \mod G(x)$
- Since M(x) mod G(x) = 0 we can detect all transmission errors as long as E(x) is not divisible by G(x) without remainder
- One can show that G(x) of order r can detect
 - all single bit errors as long as G(x) has 2 or more coefficients
 - all bursty errors (burst of length k is k-bit long 1xxxx1 string) with $k \cdot r$ (note: needs G(x) to include the term 1)
 - Any error with probability 2^{-r}

MAC layer: DFWMAC

- Traffic services
 - Asynchronous Data Service (mandatory)
 - exchange of data packets based on "best-effort"
 - support of broadcast and multicast
 - Time-Bounded Service (optional)
 - implemented using PCF (Point Coordination Function)
- Access methods
 - DFWMAC-DCF CSMA/CA (mandatory)
 - collision avoidance via binary exponential back-off mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not used for broadcasts)
 - DFWMAC-DCF w/ RTS/CTS (optional)
 - avoids hidden terminal problem
 - DFWMAC-PCF (optional)
 - · access point polls terminals according to a list

- defined through different inter frame spaces
- no guaranteed, hard priorities
- SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, polling response
- PIFS (PCF IFS)
 - medium priority, for time-bounded service using PCF
- DIFS (DCF, Distributed Coordination Function IFS)
 - lowest priority, for asynchronous data service

- station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment)
- if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type)
- if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
- if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness)

Competing stations - simple example

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

- Sending unicast packets
 - station has to wait for DIFS before sending data
 - receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC)
 - automatic retransmission of data packets in case of transmission errors

DFWMAC

- station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)
- acknowledgement via CTS after SIFS by receiver (if ready to receive)
- sender can now send data at once, acknowledgement via ACK
- other stations store medium reservations distributed via RTS and CTS

- If packet gets too long transmission error probability grows
- A simple back of the envelope calculation determines the optimal fragment size

►0

Fragmentation: What fragment size is optimal?

- Total data size: D bits
- Overhead per packet (header): h bits
- Overhead between two packets (acknowledgement): a "bits"
- We want f fragments, then each fragment has k = D/f + h data + header bits
- Channel has bit error probability q = 1-p
- Probability to transmit a packet of k bits correctly: P := p^k
- Expected number of transmissions until packet is success: 1/P
- Expected total cost for all D bits: f¢(k/P+a)
- Goal: Find a k > h that minimizes the expected cost

Fragmentation: What fragment size is optimal?

- For the sake of a simplified analysis we assume a = O(h)
- If we further assume that a header can be transmitted with constant probability c, that is, p^h = c.
- We choose k = 2h; Then clearly D = f¢h, and therefore expected cost $f \cdot \left(\frac{k}{P} + a\right) = \frac{D}{h} \left(\frac{2h}{p^{2h}} + O(h)\right) = O\left(\frac{D}{p^{h^2}}\right) = O\left(\frac{D}{c^2}\right) = O(D).$

 If already a header cannot be transmitted with high enough probability, then you might keep the message very small, for example k = h + 1/q

An access point can poll stations

 \cap

C

►O

0

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

2	2	6	6	6	2	6	0-2312	4 byt	es
Frame Control	Duration ID	Address 1	Address 2	Address 3	Sequence Control	Address 4	Data	CRC	

Byte 1: version, type, subtype

Byte 2: two DS-bits, fragm., retry, power man., more data, WEP, order

- Type
 - control frame, management frame, data frame
- Sequence control
 - important against duplicated frames due to lost ACKs
- Addresses
 - receiver, transmitter (physical), BSS identifier, sender (logical)
- Miscellaneous
 - sending time, checksum, frame control, data

scenario	to DS	from	address 1	address 2	address 3	address 4
		00		<u> </u>		
ad-hoc network	0	0	DA	SA SA	BSSID	-
infrastructure	0	1	DA	BSSID	SA	-
network, from AP						
infrastructure	1	0	BSSID	SA	DA	-
network, to AP						
infrastructure	1	1	RA	TA	DA	SA
network, within DS						

DS: Distribution System AP: Access Point DA: Destination Address SA: Source Address BSSID: Basic Service Set Identifier RA: Receiver Address TA: Transmitter Address

-0

0

Special Frames: ACK, RTS, CTS

• Acknowledgement

byte	es 2	2	6	4
ACK	Frame Control	Duration	Receiver Address	CRC

• Request To Send

byte	es 2	2	6	6	4
RTS	Frame Control	Duration	Receiver Address	Transmitter Address	CRC

• Clear To Send

byte	es 2	2	6	4
CTS	Frame Control	Duration	Receiver Address	CRC

0

⊳0

- Synchronization
 - try to find a LAN, try to stay within a LAN
 - timer etc.
- Power management
 - sleep-mode without missing a message
 - periodic sleep, frame buffering, traffic measurements
- Association/Reassociation
 - integration into a LAN
 - roaming, i.e. change networks by changing access points
 - scanning, i.e. active search for a network
- MIB Management Information Base
 - managing, read, write

• In an infrastructure network, the access point can send a beacon

C

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

• In an ad-hoc network, the beacon has to be sent by any station

C

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

- Idea: if not needed turn off the transceiver
- States of a station: sleep and awake
- Timing Synchronization Function (TSF)
 - stations wake up at the same time
- Infrastructure
 - Traffic Indication Map (TIM)
 - list of unicast receivers transmitted by AP
 - Delivery Traffic Indication Map (DTIM)
 - list of broadcast/multicast receivers transmitted by AP
- Ad-hoc
 - Ad-hoc Traffic Indication Map (ATIM)
 - announcement of receivers by stations buffering frames
 - more complicated no central AP
 - collision of ATIMs possible (scalability?)

Power saving with wake-up patterns (infrastructure)

C

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Power saving with wake-up patterns (ad-hoc)

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

⊳0
• No or bad connection? Then perform:

- Scanning
 - scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer
- Reassociation Request
 - station sends a request to one or several AP(s)
- Reassociation Response
 - success: AP has answered, station can now participate
 - failure: continue scanning
- AP accepts reassociation request
 - signal the new station to the distribution system
 - the distribution system updates its data base (i.e., location information)
 - typically, the distribution system now informs the old AP so it can release resources

WLAN: IEEE 802.11b

• Data rate

0

- 1, 2, 5.5, 11 Mbit/s, depending on SNR
- User data rate max. approx. 6 Mbit/s
- Transmission range
 - 300m outdoor, 30m indoor
 - Max. data rate <10m indoor
- Frequency
 - Free 2.4 GHz ISM-band
- Security
 - Limited, WEP insecure, SSID
- Cost
 - Low
- Availability
 - Declining

WLAN: IEEE 802.11b

- Connection set-up time
 - Connectionless/always on
- Quality of Service
 - Typically best effort, no guarantees
 - unless polling is used, limited support in products
- Manageability
 - Limited (no automated key distribution, sym. encryption)
- + Advantages: many installed systems, lot of experience, available worldwide, free ISM-band, many vendors, integrated in laptops, simple system
- Disadvantages: heavy interference on ISM-band, no service guarantees, slow relative speed only

IEEE 802.11b – PHY frame formats

Short PLCP PPDU format (optional)

⊳0

Channel selection (non-overlapping)

-

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

>0

- Data rate
 - 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s, depending on SNR
 - User throughput (1500 byte packets): 5.3 (6), 18 (24), 24 (36), 32 (54)
 - 6, 12, 24 Mbit/s mandatory
- Transmission range
 - 100m outdoor, 10m indoor: e.g., 54 Mbit/s up to 5 m, 48 up to 12 m, 36 up to 25 m, 24 up to 30m, 18 up to 40 m, 12 up to 60 m
- Frequency
 - Free 5.15-5.25, 5.25-5.35, 5.725-5.825 GHz ISM-band
- Security
 - Limited, WEP insecure, SSID
- Cost
 - \$50 adapter, \$100 base station, dropping
- Availability
 - Some products, some vendors
 - Not really deployed in Europe (regulations!)

WLAN: IEEE 802.11a

- Connection set-up time
 - Connectionless/always on
- Quality of Service
 - Typically best effort, no guarantees (same as all 802.11 products)
- Manageability
 - Limited (no automated key distribution, sym. Encryption)
- + Advantages: fits into 802.x standards, free ISM-band, available, simple system, uses less crowded 5 GHz band
- Disadvantages: stronger shading due to higher frequency, no QoS

C

C

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

→O

Operating channels for 802.11a / US U-NII

center frequency = 5000 + 5*channel number [MHz]

0

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

4/45

→O

OFDM in IEEE 802.11a (and HiperLAN2)

- OFDM with 52 used subcarriers (64 in total)
- 48 data + 4 pilot (plus 12 virtual subcarriers)
- 312.5 kHz spacing

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

⊳0

WLAN: IEEE 802.11 - future developments (2004)

- 802.11d: Regulatory Domain Update completed
- 802.11e: MAC Enhancements QoS ongoing
 - Enhance the current 802.11 MAC to expand support for applications with Quality of Service requirements, and in the capabilities and efficiency of the protocol.
- 802.11f: Inter-Access Point Protocol ongoing
 - Establish an Inter-Access Point Protocol for data exchange via the distribution system.
- 802.11g: Data Rates > 20 Mbit/s at 2.4 GHz; 54 Mbit/s, OFDM completed
- 802.11h: Spectrum Managed 802.11a (DCS, TPC) ongoing
- 802.11i: Enhanced Security Mechanisms ongoing
 - Enhance the current 802.11 MAC to provide improvements in security.
- Study Groups
 - 5 GHz (harmonization ETSI/IEEE) closed
 - Radio Resource Measurements started
 - High Throughput started

Quiz: Which 802.11 standard?

4/48

802.11 Security: An almost historical lesson

- Classic 802.11 security consists of two subsystems:
 - Wired Equivalent Privacy (WEP): A data encapsulation technique.
 - Shared Key Authentication: An authentication algorithm
- Goals:
 - Create the privacy achieved by a wired network
 - Simulate physical access control by denying access to unauthenticated stations

WEP Encapsulation

►O

►O

0

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

→0

- The sender and receiver share a secret key k
- Sender, in order to transmit a message:
 - Compute a CRC-32 checksum ICV, and attach it to the message
 - Pick a per-packet key IV v, and generate a keystream RC4(v,k)
 - Attention: WEP Allows v to be re-used with any packet
 - Encrypt data and attached ICV by XORing it with RC4(v,k)
 - Transmit header, IV v, and encrypted data/ICV
- Receiver:
 - Use received IV v and shared k to calculate keystream RC4(v,k)
 - Decrypt data and ICV by XORing it with RC4(v,k)
 - Check whether ICV is a valid CRC-32 checksum

The WEP encryption algorithm RC4 is a Vernam Cipher:

Decryption works the same way: $\mathbf{p} = \mathbf{c} \oplus \mathbf{b}$

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

⊳0

Properties of Vernam Ciphers

Thought experiment: what happens when p_1 and p_2 are encrypted under the same "random" byte **b**?

$$\mathbf{c}_1 = \mathbf{p}_1 \oplus \mathbf{b}$$
 $\mathbf{c}_2 = \mathbf{p}_2 \oplus \mathbf{b}$

Then:
$$c_1 \oplus c_2 = (p_1 \oplus b) \oplus (p_2 \oplus b) = p_1 \oplus p_2$$

Conclusion: it is a bad idea to encrypt any two bytes of data using the same byte output by a Vernam Cipher PRNG.

How to read WEP encrypted traffic

- By the Birthday Paradox, probability P_n two packets will share same IV after n packets is $P_2 = 1/2^{24}$ after two frames and $P_n = P_{n-1} + (n-1)(1-P_{n-1})/2^{24}$ for n > 2.
- 50% chance of a collision exists already after 4823 packets.
- Pattern recognition can disentangle the XOR'd recovered plaintext.
- Recovered ICV can tell you when you've disentangled plaintext correctly (or help to recover the plaintext in the first place).
- Once you know a single RC4, you can inject your own packets

- Ways to accelerate the process:
- Send spam into the network, then you already know the plaintext.
- Get the victim to send e-mail to you, the AP creates the plaintext, just for you.
- For a given AP, everybody uses the same secret key k
- Very bad: Many 802.11 cards reset their IV (=v) counter to 0 every time they are activated, and simply increment it for each packet they transmit. In this case a spy knows the RC(v,k) for low v values in short time.
- Naturally a spy would use a decryption dictionary to store the already found RC4(v,k)... needs at most 2²⁴¢1500 bytes = 24GBytes

Thought experiment: how hard is it to change a genuine packet's data, so ICV won't detect the change?

Represent an n-bit plaintext as an n-th degree binomial polynomial:

 $p = b_n x^n + b_{n-1} x^{n-1} + \dots + b_0 x^0$

Then the plaintext with ICV can be represented as :

 $px^{32} + ICV(p) = b_n x^{n+32} + b_{n-1} x^{n+31} + \dots + b_0 x^{32} + ICV(p)$

If the n+32 bit RC4 key stream used to encrypt the body is represented by the $n+32^{nd}$ degree polynomial r, then the encrypted message body is

 $px^{32} + ICV(p) + r$

But the ICV is linear, meaning for any polynomials p and qICV(p+q) = ICV(p) + ICV(q)

This means that if q is an arbitrary nth degree polynomial, i.e., an arbitrary change in the underlying message data:

 $(p+q)x^{32} + ICV(p+q) + r = px^{32} + qx^{32} + ICV(p) + ICV(q) + r$

 $= ((px^{32} + ICV(p)) + r) + (qx^{32} + ICV(q))$

Conclusion: Anyone can alter an WEP encapsulated packet in arbitrary ways without detection, and without knowing RC4(v,k)

- Goal is that client joining the network really knows the shared key k
- Protocol:
 - Access point sends a challenge string to client
 - Client WEP-encrypts challenge, and sends result back to AP
 - If the challenge is encrypted correctly, AP accepts the client
- Client can spoof protocol the same way as injecting a message.
- All a client needs is a valid RC4(v,k), for some v.

WEP message decryption revisited

- How can a client decrypt a specific packet with IV v for which the client does not have the RC4(v,k). (The first packet that uses v.)
- Idea: Use the access point (who knows k)
- Spoofing protocol (one of many possibilities):
 - Join the network (authentication spoofing)
 - Send a handcrafted message "encrypted" with key v to a destination you control, for example a node outside the wireless LAN.
 - The AP will "decrypt" the message for you, and forward it to your destination. When you XOR the "encrypted" with the "decrypted" message, you get the RC(v,k) for the v you wanted.
- New attacks: KoreK-attacks aircrack, chopchop (byte-by-byte)

- What could one do to improve WEP:
 - Use long IV's that are used only once in the lifetime of a shared key k
 - Use a strong message authentication code (instead of a CRC code), that does depend on the key and the IV.
- What you should do:
 - Don't trust WEP. Don't trust it more than sending plain messages over an Ethernet. However, WEP is usually seen as a good first deterrent against so-called "war drivers."
 - Put the wireless network outside your firewall
 - There are new proprietary security solutions such as LEAP.
 - Use other security mechanisms such as WPA, WPA2, VPN, IPSec, ssh

- Idea
 - Universal radio interface for ad-hoc wireless connectivity
 - Interconnecting computer and peripherals, handheld devices, PDAs, cell phones replacement of IrDA
 - Embedded in other devices, goal: 5€/device (2002: 50€/USB bluetooth)
 - Short range (10 m), low power consumption, license-free 2.45 GHz ISM
 - Voice and data transmission, approx. 1 Mbit/s gross data rate

One of the first modules (Ericsson).

- History
 - 1994: Ericsson (Mattison/Haartsen), "MC-link" project

►∩

- Renaming of the project: Bluetooth according to Harald "Blåtand" Gormsen [son of Gorm], King of Denmark in the 10th century
- 1998: foundation of Bluetooth SIG, www.bluetooth.org
- 1999: erection of a rune stone at Ercisson/Lund ;-)
- 2001: first consumer products for mass market, spec. version 1.1 released
- Special Interest Group
 - Original founding members: Ericsson, Intel, IBM, Nokia, Toshiba
 - Added promoters: 3Com, Agere (was: Lucent), Microsoft, Motorola
 - > 2500 members
 - Common specification and certification of products

- 2.4 GHz ISM band, 79 RF channels, 1 MHz carrier spacing
 - Channel 0: 2402 MHz ... channel 78: 2480 MHz
 - G-FSK modulation, 1-100 mW transmit power
- FHSS and TDD
 - Frequency hopping with 1600 hops/s
 - Hopping sequence in a pseudo random fashion, determined by a master
 - Time division duplex for send/receive separation
- Voice link SCO (Synchronous Connection Oriented)
 - FEC (forward error correction), no retransmission, 64 kbit/s duplex, point-to-point, circuit switched
- Data link ACL (Asynchronous ConnectionLess)
 - Asynchronous, fast acknowledge, point-to-multipoint, up to 433.9 kbit/s symmetric or 723.2/57.6 kbit/s asymmetric, packet switched
- Topology
 - Overlapping piconets (stars) forming a scatternet

Piconet

- Collection of devices connected in an ad hoc fashion
- One unit acts as master and the others • as slaves for the lifetime of the piconet
- Master determines hopping pattern, \bullet slaves have to synchronize
- Each piconet has a unique hopping pattern
- Participation in a piconet = ۲ synchronization to hopping sequence
- Each piconet has one master and up to 7 simultaneous slaves (> 200 could be parked)

S=Slave

Forming a piconet

- All devices in a piconet hop together
 - Master gives slaves its clock and device ID
 - Hopping pattern: determined by device ID (48 bit, unique worldwide)
 - Phase in hopping pattern determined by clock
- Addressing
 - Active Member Address (AMA, 3 bit)
 - Parked Member Address (PMA, 8 bit)

Scatternet

• Linking of multiple co-located piconets through the sharing of common master or slave devices

- Devices can be slave in one piconet and master of another
- Communication between piconets
 - Devices jumping back and forth between the piconets

Bluetooth protocol stack

AT: attention sequence

OBEX: object exchange

SDP: service discovery protocol RFCOMM: radio frequency comm.

TCS BIN: telephony control protocol specification - binary

BNEP: Bluetooth network encapsulation protocol

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

Frequency selection during data transmission

Baseband

• Piconet/channel definition

- Low-level packet definition
 - Access code
 - Channel, device access, e.g., derived from master
 - Packet header
 - 1/3-FEC, active member address (broadcast + 7 slaves), link type, alternating bit ARQ/SEQ, checksum

⊳0

►O

	payload (30)										
HV1	audio (10) FEC (20)										
HV2	audio		FEC (10)								
HV3	audio (30)										
DV	audio (10)	header (1)	payload (0-9)	2/3 FEC	CRC (2)						

►O

(bytes)

0

→0

ACL Payload types

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

⊳0

Baseband data rates

0		 0			→0 →0				
ACL		Туре	Payload Header [byte]	User Payload [byte]	FEC	CRC	Symmetric max. Rate [kbit/s]	Asymmetrie max. Rate [Forward	c kbit/s] Reverse
1 sla	ţ,	DM1	1	0-17	2/3	yes	108.8	108.8	108.8
1 510	1	DH1	1	0-27	no	yes	172.8	172.8	172.8
3 610	.∫	DM3	2	0-121	2/3	yes	258.1	387.2	54.4
5 510	1	DH3	2	0-183	no	yes	390.4	585.6	86.4
E ala	1.	DM5	2	0-224	2/3	yes	286.7	477.8	36.3
5 510	1	DH5	2	0-339	no	yes	433.9	723.2	57.6
	_	AUX1	1	0-29	no	no	185.6	185.6	185.6
	ſ	HV1	na	10	1/3	no	64.0		
SCO ·	Į	HV2	na	20	2/3	no	64.0		
000		HV3	na	30	no	no	64.0		
	L	DV	1 D	10+(0-9) D	2/3 D	yes D	64.0+57.6 C)	

Data Medium/High rate, High-quality Voice, Data and Voice

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer
Baseband link types

- Polling-based TDD packet transmission
 - 625µs slots, master polls slaves
- SCO (Synchronous Connection Oriented) Voice
 - Periodic single slot packet assignment, 64 kbit/s full-duplex, point-to-point
- ACL (Asynchronous ConnectionLess) Data
 - Variable packet size (1,3,5 slots), asymmetric bandwidth, point-to-multipoint

Robustness

- Slow frequency hopping with hopping patterns determined by a master
 - Protection from interference on certain frequencies
 - Separation from other piconets (FH-CDMA)

Baseband States of a Bluetooth Device

Standby: do nothing Inquire: search for other devices Page: connect to a specific device Connected: participate in a piconet Park: release AMA, get PMA Sniff: listen periodically, not each slot Hold: stop ACL, SCO still possible, possibly participate in another piconet

⊳0

Example: Power consumption/CSR BlueCore2

- Typical Average Current Consumption (1)
- VDD=1.8V Temperature = 20°C
- Mode

0

•	SCO connection HV3 (1s interval Sniff Mode) (Slave)	26.0 mA
•	SCO connection HV3 (1s interval Sniff Mode) (Master)	26.0 mA
•	SCO connection HV1 (Slave)	53.0 mA
•	SCO connection HV1 (Master)	53.0 mA
•	ACL data transfer 115.2kbps UART (Master)	15.5 mA
•	ACL data transfer 720kbps USB (Slave)	53.0 mA
•	ACL data transfer 720kbps USB (Master)	53.0 mA
•	ACL connection, Sniff Mode 40ms interval, 38.4kbps UART	4.0 mA
•	ACL connection, Sniff Mode 1.28s interval, 38.4kbps UART	0.5 mA
•	Parked Slave, 1.28s beacon interval, 38.4kbps UART	0.6 mA
•	Standby Mode (Connected to host, no RF activity)	47.0 µA
•	Deep Sleep Mode(2)	20.0 µA

- Notes:
- (1) Current consumption is the sum of both BC212015A and the flash.
- (2) Current consumption is for the BC212015A device only.
- (More: <u>www.csr.com</u>)

⊳0

L2CAP - Logical Link Control and Adaptation Protocol

- Simple data link protocol on top of baseband
- Connection oriented, connectionless, and signaling channels
- Protocol multiplexing
 - RFCOMM, SDP, telephony control
- Segmentation & reassembly
 - Up to 64kbyte user data, 16 bit CRC used from baseband
- QoS flow specification per channel
 - Follows RFC 1363, specifies delay, jitter, bursts, bandwidth
- Group abstraction
 - Create/close group, add/remove member

C

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

→O

L2CAP packet formats

Connectionless PDU

2	2	≥2	0-65533	bytes
length	CID=2	PSM	payload	

►O

Connection-oriented PDU

2	2	0-65535	bytes
length	CID	payload	

Signaling command PDU

0

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

→O

Security

- Inquiry/response protocol for discovering services
 - Searching for and browsing services in radio proximity
 - Adapted to the highly dynamic environment
 - Can be complemented by others like SLP, Jini, Salutation, ...
 - Defines discovery only, not the usage of services
 - Caching of discovered services
 - Gradual discovery
- Service record format
 - Information about services provided by attributes
 - Attributes are composed of an 16 bit ID (name) and a value
 - values may be derived from 128 bit Universally Unique Identifiers (UUID)

Additional protocols to support legacy protocols/apps

- RFCOMM
 - Emulation of a serial port (supports a large base of legacy applications)
 - Allows multiple ports over a single physical channel
- Telephony Control Protocol Specification (TCS)
 - Call control (setup, release)
 - Group management
- OBEX
 - Exchange of objects, IrDA replacement
- WAP
 - Interacting with applications on cellular phones

Profiles

- Represent default solutions for usage models
 - Vertical slice through the protocol stack
 - Basis for interoperability
- Generic Access Profile
- Service Discovery Application Profile
- Cordless Telephony Profile
- Intercom Profile
- Serial Port Profile
- Headset Profile
- Dial-up Networking Profile
- Fax Profile
- LAN Access Profile
- Generic Object Exchange Profil
- Object Push Profile
- File Transfer Profile
- Synchronization Profile

- Generic Audio Video Distribution Hands Free
- Hardcopy Cable Replacement

WPAN: IEEE 802.15-1 - Bluetooth

- Data rate
 - Synchronous, connection-oriented: 64 kbit/s
 - Asynchronous, connectionless
 - 433.9 kbit/s symmetric
 - 723.2 / 57.6 kbit/s asymmetric
- Transmission range
 - POS (Personal Operating Space) up to 10 m
 - with special transceivers up to 100 m
- Frequency
 - Free 2.4 GHz ISM-band
- Security
 - Challenge/response (SAFER+), hopping sequence
- Cost
 - 50€ adapter, drop to 5€ if integrated
- Availability
 - Integrated into some products, several vendors

WPAN: IEEE 802.15-1 - Bluetooth

- Connection set-up time
 - Depends on power-mode
 - Max. 2.56s, avg. 0.64s
- Quality of Service
 - Guarantees, ARQ/FEC
- Manageability
 - Public/private keys needed, key management not specified, simple system integration
- + Advantages: already integrated into several products, available worldwide, free ISM-band, several vendors, simple system, simple ad-hoc networking, peer to peer, scatternets
- Disadvantages: interference on ISM-band, limited range, max. 8 devices/network&master, high set-up latency

- 802.15-2: Coexistence
 - Coexistence of Wireless Personal Area Networks (802.15) and Wireless Local Area Networks (802.11), quantify the mutual interference
- 802.15-3: High-Rate
 - Standard for high-rate (20Mbit/s or greater) WPANs, while still lowpower/low-cost
 - Data Rates: 11, 22, 33, 44, 55 Mbit/s
 - Quality of Service isochronous protocol
 - Ad-hoc peer-to-peer networking
 - Security
 - Low power consumption
 - Low cost
 - Designed to meet the demanding requirements of portable consumer imaging and multimedia applications

WPAN: IEEE 802.15 – future developments

- 802.15-4: Low-Rate, Very Low-Power
 - Low data rate solution with multi-month to multi-year battery life and very low complexity
 - Potential applications are sensors, interactive toys, smart badges, remote controls, and home automation
 - Data rates of 20-250 kbit/s, latency down to 15 ms
 - Master-Slave or Peer-to-Peer operation
 - Support for critical latency devices, such as joysticks
 - CSMA/CA channel access (data centric), slotted (beacon) or unslotted
 - Automatic network establishment by the PAN coordinator
 - Dynamic device addressing, flexible addressing format
 - Fully handshaked protocol for transfer reliability
 - Power management to ensure low power consumption
 - 16 channels in the 2.4 GHz ISM band, 10 channels in the 915 MHz US ISM band and one channel in the European 868 MHz band

- Data rate
 - 0.8, 1.6, 5, 10 Mbit/s
- Transmission range
 - 300m outdoor, 30m indoor

- Frequency
 - 2.4 GHz ISM
- Security
 - Strong encryption, no open access
- Cost
 - Adapter \$50, base station \$100
- Availability
 - Several products from different vendors

- Connection set-up time
 - 10 ms bounded latency
- Quality of Service
 - Up to 8 streams A/V, up to 8 voice streams, priorities, best-effort
- Manageability
 - Like DECT & 802-LANs
- + Advantages: extended QoS support, host/client and peer/peer, power saving, security
- Disadvantages: future uncertain due to DECT-only devices plus 802.11a/b for data

- Data rate
 - Typ. up to 115 kbit/s (serial interface)
- Transmission range
 - 5-100 m, depending on power (typ. 10-500 mW)
- Frequency
 - Typ. 27 (EU, US), 315 (US), 418 (EU), 426 (Japan), 433 (EU), 868 (EU), 915 (US) MHz (depending on regulations)
- Security
 - Some products with added processors
- Cost
 - Cheap: \$10-\$50
- Availability
 - Many products, many vendors

- Connection set-up time
 - N/A
- Quality of Service
 - none
- Manageability
 - Very simple, same as serial interface
- Advantages: very low cost, large experience, high volume available
- Disadvantages: no QoS, crowded ISM bands (particularly 27 and 433 MHz), typ. no Medium Access Control, 418 MHz experiences interference with TETRA

Broadband network types

- Common characteristics
 - ATM QoS (CBR, VBR, UBR, ABR)
- HIPERLAN/2
 - short range (< 200 m), indoor/campus, 25 Mbit/s user data rate
 - access to telecommunication systems, multimedia applications, mobility (<10 m/s)
- HIPERACCESS
 - wider range (< 5 km), outdoor, 25 Mbit/s user data rate
 - fixed radio links to customers ("last mile"), alternative to xDSL or cable modem, quick installation
 - Several (proprietary) products exist with 155 Mbit/s plus QoS
- HIPERLINK currently no activities
 - intermediate link, 155 Mbit/s
 - connection of HIPERLAN access points or connection between HIPERACCESS nodes

- Function
 - Standard: In response to a radio interrogation signal from a reader (base station) the RFID tags transmit their ID
 - Enhanced: additionally data can be sent to the tags, different media access schemes (collision avoidance)
- Features
 - No line-of sight required (compared to, e.g., laser scanners)
 - RFID tags withstand difficult environmental conditions (sunlight, cold, frost, dirt etc.)
 - Products available with read/write memory, smart-card capabilities
- Categories
 - Passive RFID: operating power comes from the reader over the air which is feasible up to distances of 3 m, low price (1€)
 - Active RFID: battery powered, distances up to 100 m

- Data rate
 - Transmission of ID only (e.g., 48 bit, 64kbit, 1 Mbit)
 - 9.6 115 kbit/s
- Transmission range
 - Passive: up to 3 m
 - Active: up to 30-100 m
 - Simultaneous detection of up to, e.g.,
 256 tags, scanning of, e.g., 40 tags/s
- Frequency
 - 125 kHz, 13.56 MHz, 433 MHz, 2.4 GHz, 5.8 GHz and many others
- Security
 - Application dependent, typ. no crypt. on RFID device
- Cost
 - Very cheap tags, down to \$1 (passive)
- Availability
 - Many products, many vendors

- Connection set-up time
 - Depends on product/medium access scheme (typ. 2 ms per device)
- Quality of Service
 - none
- Manageability
 - Very simple, same as serial interface
- Advantages: extremely low cost, large experience, high volume available, no power for passive RFIDs needed, large variety of products, relative speeds up to 300 km/h, broad temp. range
- Disadvantages: no QoS, simple denial of service, crowded ISM bands, typ. one-way (activation/ transmission of ID)

- Applications
 - Total asset visibility: tracking of goods during manufacturing, localization of pallets, goods etc.
 - Loyalty cards: customers use RFID tags for payment at, e.g., gas stations, collection of buying patterns
 - Automated toll collection: RFIDs mounted in windshields allow commuters to drive through toll plazas without stopping
 - Others: access control, animal identification, tracking of hazardous material, inventory control, warehouse management, ...
- Local Positioning Systems
 - GPS useless indoors or underground, problematic in cities with high buildings
 - RFID tags transmit signals, receivers estimate the tag location by measuring the signal's time of flight

- Security
 - Denial-of-Service attacks are always possible
 - Interference of the wireless transmission, shielding of transceivers
 - IDs via manufacturing or one time programming
 - Key exchange via, e.g., RSA possible, encryption via, e.g., AES
- Future Trends
 - RTLS: Real-Time Locating System big efforts to make total asset visibility come true
 - Integration of RFID technology into the manufacturing, distribution and logistics chain
 - Creation of "electronic manifests" at item or package level (embedded inexpensive passive RFID tags)
 - 3D tracking of children, patients

- Devices and Companies
 - AXCESS Inc., www.axcessinc.com
 - Checkpoint Systems Group, www.checkpointsystems.com
 - GEMPLUS, www.gemplus.com/app/smart_tracking
 - Intermec/Intellitag, www.intermec.com
 - I-Ray Technologies, www.i-ray.com
 - RF Code, www.rfcode.com
 - Texas Instruments, www.ti-rfid.com/id
 - WhereNet, www.wherenet.com
 - Wireless Mountain, www.wirelessmountain.com
 - XCI, www.xci-inc.com
- Only a very small selection...

- Example Product: Intermec RFID UHF OEM Reader
 - Read range up to 7m
 - Anticollision algorithm allows for scanning of 40 tags per second regardless of the number of tags within the reading zone
 - US: unlicensed 915 MHz, Frequency Hopping
 - Read: 8 byte < 32 ms</p>
 - Write: 1 byte < 100ms</p>
- Example Product: Wireless Mountain Spider
 - Proprietary sparse code anti-collision algorithm
 - Detection range 15 m indoor, 100 m line-of-sight
 - > 1 billion distinct codes
 - Read rate > 75 tags/s
 - Operates at 308 MHz

- Relevant Standards
 - American National Standards Institute
 - ANSI, www.ansi.org, www.aimglobal.org/standards/rfidstds/ANSIT6.html
 - Automatic Identification and Data Capture Techniques
 - JTC 1/SC 31, www.uc-council.com/sc31/home.htm, www.aimglobal.org/standards/rfidstds/sc31.htm
 - European Radiocommunications Office
 - ERO, www.ero.dk, www.aimglobal.org/standards/rfidstds/ERO.htm
 - European Telecommunications Standards Institute
 - ETSI, www.etsi.org, www.aimglobal.org/standards/rfidstds/ETSI.htm
 - Identification Cards and related devices
 - JTC 1/SC 17, www.sc17.com, www.aimglobal.org/standards/rfidstds/sc17.htm,
 - Identification and communication
 - ISO TC 104 / SC 4, www.autoid.org/tc104_sc4_wg2.htm, www.aimglobal.org/standards/rfidstds/TC104.htm
 - Road Transport and Traffic Telematics
 - CEN TC 278, www.nni.nl, www.aimglobal.org/standards/rfidstds/CENTC278.htm
 - Transport Information and Control Systems
 - ISO/TC204, www.sae.org/technicalcommittees/gits.htm, www.aimglobal.org/standards/rfidstds/ISOTC204.htm

- ISO Standards
 - ISO 15418
 - MH10.8.2 Data Identifiers
 - EAN.UCC Application Identifiers
 - ISO 15434 Syntax for High Capacity ADC Media
 - ISO 15962 Transfer Syntax
 - ISO 18000
 - Part 2, 125-135 kHz
 - Part 3, 13.56 MHz
 - Part 4, 2.45 GHz
 - Part 5, 5.8 GHz
 - Part 6, UHF (860-930 MHz, 433 MHz)
 - ISO 18047 RFID Device Conformance Test Methods
 - ISO 18046 RF Tag and Interrogator Performance Test Methods

ISM band interference

- Many sources of interference
 - Microwave ovens, microwave lightning
 - 802.11, 802.11b, 802.11g, 802.15, Home RF
 - Even analog TV transmission, surveillance
 - Unlicensed metropolitan area networks

- ..

- Levels of interference
 - Physical layer: interference acts like noise
 - Spread spectrum tries to minimize this
 - FEC/interleaving tries to correct
 - MAC layer: algorithms not harmonized
 - E.g., Bluetooth might confuse 802.11

- Bluetooth may act like a rogue member of the 802.11 network
 - Does not know anything about gaps, inter frame spacing etc.

- IEEE 802.15-2 discusses these problems
 - Proposal: Adaptive Frequency Hopping
 - a non-collaborative Coexistence Mechanism
- Real effects? Many different opinions, publications, tests, formulae:
 - Results from complete breakdown to almost no effect

Bluetooth (FHSS) seems more robust than 802.11b (DSSS)