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« Measurements
 Anchors

e Virtual Coordinates
e Heuristics

* Practice
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Motivation
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 Why positioning?
— Sensor nodes without position information is often meaningless
— Heavy and/or costly positioning hardware
— Geo-routing

« Why not GPS (or Galileo)?
— Heavy, large, and expensive (as of yet)
— Battery drain
— Not indoors
— Accuracy?

e Solution: equip small fraction with GPS (anchors)
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Measurements
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Distance estimation

* Received Signal Strength Indicator (RSSI)
— The further away, the weaker the received signal.
— Mainly used for RF signals.
 Time of Arrival (ToA) or Time Difference of Arrival (TDoA)
— Signal propagation time translates to distance.
— RF, acoustic, infrared and ultrasound.

Angle estimation

 Angle of Arrival (AoA)

— Determining the direction of propagation of a radio-frequency wave
incident on an antenna array.

» Directional Antenna
« Special hardware, e.g., laser transmitter and receivers.
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Positioning (a.k.a. Localization)

o »0O »0O »0O

o Task: Given distance or angle measurements or mere connectivity
information, find the locations of the sensors.

* Anchor-based

— Some nodes know their locations, either by a GPS or as pre-specified.
* Anchor-free

— Relative location only. Sometimes called virtual coordinates.

— Theoretically cleaner model (less parameters, such as anchor density)

 Range-based
— Use range information (distance estimation).

 Range-free
— No distance estimation, use connectivity information such as hop count.
— It was shown that bad measurements don’t help a lot anyway.

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 12/5




o

Trilateration and Triangulation
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 Use geometry, measure the distances/angles to three anchors.

 Trilateration: use distances

— Global Positioning System (GPS)
,IH b /\1/'— R
i ®
« Triangulation: use angles N T
” \\ \\ | // . C
— Some cell phone systems PR |
 How to deal with inaccurate \ a ;
measurements? S g

— Least squares type of approach N -7

— What about strictly more than
3 (inaccurate) measurements?

Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

12/6



Ambiguity Problems
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Same distances, different realization.
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Continuous deformation, flips, etc.

o »0O »0O »0O

[Jie Gao]

» Rigidity theory: Given a set of rigid bars connected by hinges,
rigidity theory studies whether you can move them continuously.
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Simple hop-based algorithms
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o Algorithm
— Get graph distance h to anchor(s)

— Intersect circles around anchors

* radius = distance to anchor

— Choose point such that maximum error is minimal
« Find enclosing circle (ball) of minimal radius

 Center is calculated location
* In higher dimensions: 1 <d <h

— Rule of thumb: Sparse graph
- bad performance
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How about no anchors at all...?

o

O »O)
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 |n absence of anchors...

9

...nodes are clueless about real coordinates.
 For many applications, real coordinates are not necessary

—> Virtual coordinates are sufficient
- Geometric Routing requires only virtual coordinates

« Require no routing tables
* Resource-frugal and scalable
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Virtual Coordinates
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o

e l|dea:
Close-by nodes have similar coordinates
Distant nodes have very different coordinates

—> Similar coordinates imply physical proximity!

» Applications
— Geometric Routing
— Locality-sensitive queries
— Obtaining meta information on the network
— Anycast services (,Which of the service nodes is closest to me?*)
— OQutside the sensor network domain: e.g., Internet mapping
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Model
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* Unit Disk Graph (UDG) to model

wireless multi-hop network
— Two nodes can communicate iff
Euclidean distance is at most 1

e Sensor nodes may not be capable of
— Sensing directions to neighbors
— Measuring distances to neighbors

» Goal: Derive topologically correct coordinate information from
connectivity information only.
— Even the simplest nodes can derive connectivity information
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Context

O
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Distance/Angle

information

L %4

Connectivity

iInformation only

With Anchors

Positioning

(Solution quality depends on anchor density)

No Anchors
Virtual Coordinates

Distance/Angle based ¢+ Connectivity based

Virtual Coordinates

7

next
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Virtual Coordinates «— UDG Embedding

o

» Given the connectivity information for each node...

v, v, Vg v, Ve ...and knqwmg the underlying
graphis a UDG...
Vi V,

o ..find a UDG embedding in the plane
such that all connectivity requirements are i W
fulfilled! (> Find a realization of a UDG) ; % v,

This problem is NP-hard!

(Simple reduction to UDG-recognition

problem, which is NP-hard)
[Breu, Kirkpatrick, Comp.Geom.Theory 1998]




UDG Approximation — Quality of Embedding

Finding an exact realization of a UDG is NP-hard.
- Find an embedding r(G) which approximates a realization.

Particularly,
- Map adjacent vertices (edges) to points which are close together.
- Map non-adjacent vertices (,non-edges®) to far apart points.

Define quality of embedding q(r(G)) as:

Ratio between longest edge to shortest non-edge in the
embedding.

Let p(u,v) be the
distance between
points u and v in the
embedding.

Maxy, vlck p(u,v)

gl

min{uf,v/}gE p(u’, ’U’)
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UDG Approximation

o »0O »0O »0O

 For each UDG G, there exists
an embedding r(G), such JG(E) = ”’fax{u,v}eg P(’U;,t’?
that, q(r(G)) < 1. ming, negp e, v')

(a realization of G)

* Finding such an embedding IS NP-hard

graphs G, q(r, s(G))< a.
* Example:
Vl V2 V3 V4 V5 .'3‘:0
Vs Vi Va V3 Vi
V5 V3 V4 V5 VS AN
Vs Vol T, S e

r(q(G)) =18/0.7=2.6
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Some Results
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 There are a few virtual coordinates algorithms
All of them evaluated only by simulation on random graphs
» In fact there is only one provable approximation algorithm

* Plus there are lower bounds on the approximability.

There is no algorithm with approximation

ratio better than \/3/2 — ¢, unless P=NP.
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Approximation Algorithm: Overview

O »O)
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Four major steps _
UDG Graph G with MIS M.

1. Compute metric on MIS of input
graph - Spreading constraints

(Key conceptual difference to
previous approaches!)

Approximate pairwise distances
between nodes such that, MIS
nodes are neatly spread out.

2. Volume-respecting, high j
dimensional embedding
Volume respecting embedding of

nodes in B"with small distortion.

3. Random projection to 2D l

Nodes spread out fairly well in R?.

|

Final embedding of G in R?.
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Lower Bound: Quasi Unit Disk Graph

o

Definition Quasi Unit Disk Graph:

Let Ve R?, and d € [0,1]. The symmetric
Euclidean graph G=(V,E), such that for
any pair u,v € V

o dist(u,v) <d={uyv} eE

e dist(uv)>1 = {UVI¢E

is called d-quasi unit disk graph.
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Reduction

O »O)
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We want to show that finding an embedding with
q(r(G)) <4/3/2 — €, where € goes to 0 for n 2 oo is NP-hard.

We prove an equivalent statement:

Given a unit disk graph G=(V,E), it is NP-
hard to find a realization of G as a d-quasi

unit disk graph withd > \/2/3 + ¢, where &
tends to O for n>co.

- Even when allowing non-edges to be smaller than 1, embedding a
unit disk graph remains NP-hard!

- It follows that finding an approximation ratio better than /3/2 — e
Is also NP-hard.
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Reduction
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* Reduction from 3-SAT (each variable appears in at most 3 clauses)

 Given a instance C of this 3-SAT, we give a polynomial time
construction of G=(V,, E.) such that the following holds:

— C is satisfiable = G, Is realizable as a unit disk graph

— Cis not satisfiable = G is not realizable as a d-quasi unit disk
graphwith d > /2/3 4 ¢

* Unless P=NP, there is no approximation algorithm with
approximation ratio better than /3/2 —e.
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Proof idea
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Construct a grid drawing of the SAT instance.
Grid drawing is orientable iff SAT instance is satisfiable.

Grid components (clauses, literals, wires, crossings,...) are
composed of nodes = Graph G..

G is realizable as a d-quasi unit disk graph with d > /2/3 4+ ¢
Iff grid drawing is orientable.

M M
J 1
M
C J
M M M anlan
g uJ J ) pJ
M M M
C. |- T 0
L Y Y |
xi[x EES xt[xs f
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Summary

o »0O

* Virtual coordinates problem is important!

« Natural formulation as unit disk graph embedding.
—> Clear-cut optimization problem.

Upper Bound : « € O(log?°n+/log log n)

Lower Bound: o> /3/2 —¢

- Gap between upper and lower bound is huge!

Open Problems:

e Diminish gap between upper and lower bound

» Distributed Algorithm
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Heuristics: Spring embedder

»O) »O)
L g

 Nodes are “masses”, edges are “springs”.
* Length of the spring equals the distance measurement.

* Springs put forces to the nodes, nodes move, until stabilization.

« Force: F;=d; —r;, along the direction pp..
 Total force on n: F=X F,.
* Move the node n, by a small distance (proportional to F;).
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Spring Embedder Discussion
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* Problems:
— may deadlock in local minimum
— may never converge/stabilize (e.g. just two nodes)

e Solution: Need to start from a reasonably good initial estimation.

(a) Ground truth (b) Alternate realization

[Jie Gao]
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Heuristics: Priyantha et al.

O »O)
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L 4

N.B. Priyantha, H. Balakrishnan, E. Demaine, S. Teller:
Anchor-Free Distributed Localization
in Sensor Networks, SenSys, 2003.

iterative process minimizes the layout energy
N2
Ep) = > (o= pill - 1)
{iJ}eE
» fact: layouts can have foldovers
without violating the distance constraints

» problem: optimization can converge
to such a local optimum

» solution: find a good initial layout
fold-free — already close to the
global optimum (=“real layout”)
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Continued

o

Phase 1: compute initial layout
» determine periphery

nodes Uy, Us. Uy, UE

» determine central
node ug

» use polar coordinates

py = d(v,uc) 6, = arctan ( av

as positions of node v

Phase 2: Spring Embedder
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Heuristics: Gotsman et al.
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C. Gotsman, Y. Koren [5]. Distributed
Graph Layout for Sensor Networks, GD, 2004.

» initial placement: spread sensors
> iijree exP(—4)llpi—pjl 2
>ic IPi—pjl12
» linear algebra:
minimized by second highest
eigenvector v» of A where
9+ — — exp(—Lj)
J 2 {ijreE OXP(—Lj)
ajj = 1

— min

» x.Ax.A’x.A%x, ... converges to v
> i jyeE EXP(—LiX;) )
2_j-{ijyeE &XP(=1j)
» compute third eigenvector vs,
use v». V3 as coordinates

PX;H%(Xer

[Fleischer & Pich]
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Continued
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» distributed optimization (spring model)
» alternative: majorization
» compute sequence of

layouts p(9). p(1) p(2) . with

E(p?) > E(p1) > E(p®) > ...

» solve linear equation
L) pt+1) — [(Op()

in distributed manner
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Heuristics: Shang et al.
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Y. Shang, W. Ruml [7].

Improved MDS-based Localization, /EEE Infocom, 2004.

» compute a local map
for each node

(local MDS of the
2-hop neighborhood)

» merge local map patches
Into a global map
(use incremental or
binary-tree strategy)

» apply distributed
optimization to the result
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Heuristics: Bruck et al.

O LC »O)

J. Bruck, J. Gao, A. Jiang [8]. Localization and Routing in
Sensor Networks by Local Angle Information,
Mobile Ad Hoc Networking & Computing, 2005.

» Choose an edge e as x-axis to
obtain absolute angles.

» Form an LP whose variables are
the edge lengths /(e).

» Foralledges 0 </(e) <1.
» Forany cycle ey, ..., ep:

/

Z':'; ¢(ej)cosf; =0 and
S P l(ej)sinbj=0.

» Non-adjacent node pair constraints.

» Crossing-edge constraints.

[Fleischer & Pich]
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Practical lessons
»0 >0 »0

O »0O »0O

Theory Practice

e T

S

o

 RSSI in sensor networks: good, but not for “reasonable” localization

 [For exact indoor localization

» Buy special hardware (e.g., UWB)
* Place huge amount of short range anchors for single-hop localization
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