Chapter 12 POSITIONING

Distributed Computing Group

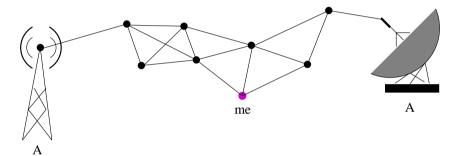
Mobile Computing Winter 2005 / 2006

Overview

- Motivation
- Measurements
- Anchors
- Virtual Coordinates
- Heuristics
- Practice

Motivation

- Why positioning?
 - Sensor nodes without position information is often meaningless
 - Heavy and/or costly positioning hardware
 - Geo-routing



- Why not GPS (or Galileo)?
 - Heavy, large, and expensive (as of yet)
 - Battery drain
 - Not indoors
 - Accuracy?
- Solution: equip small fraction with GPS (anchors)

Measurements

Distance estimation

- Received Signal Strength Indicator (RSSI)
 - The further away, the weaker the received signal.
 - Mainly used for RF signals.
- Time of Arrival (ToA) or Time Difference of Arrival (TDoA)
 - Signal propagation time translates to distance.
 - RF, acoustic, infrared and ultrasound.

Angle estimation

- Angle of Arrival (AoA)
 - Determining the direction of propagation of a radio-frequency wave incident on an antenna array.
- Directional Antenna
- Special hardware, e.g., laser transmitter and receivers.

Positioning (a.k.a. Localization)

 Task: Given distance or angle measurements or mere connectivity information, find the locations of the sensors.

Anchor-based

Some nodes know their locations, either by a GPS or as pre-specified.

Anchor-free

- Relative location only. Sometimes called virtual coordinates.
- Theoretically cleaner model (less parameters, such as anchor density)

Range-based

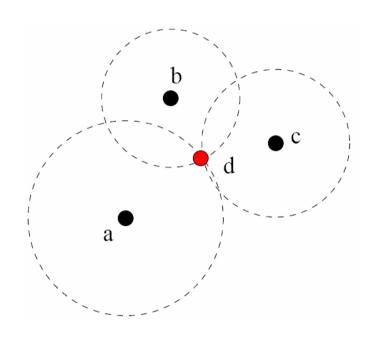
Use range information (distance estimation).

Range-free

- No distance estimation, use connectivity information such as hop count.
- It was shown that bad measurements don't help a lot anyway.

Trilateration and Triangulation

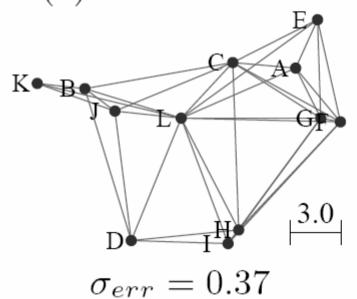
- Use geometry, measure the distances/angles to three anchors.
- Trilateration: use distances
 - Global Positioning System (GPS)
- Triangulation: use angles
 - Some cell phone systems
- How to deal with inaccurate measurements?
 - Least squares type of approach
 - What about strictly more than3 (inaccurate) measurements?

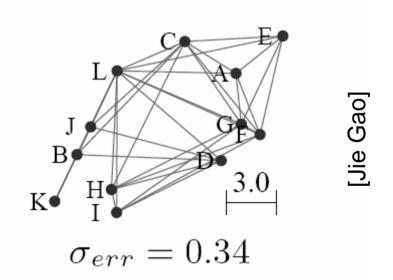


Ambiguity Problems

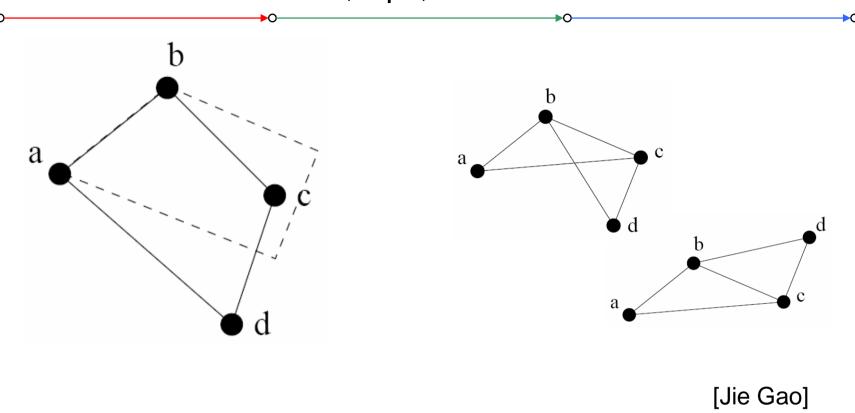
Same distances, different realization.

(a) Ground truth





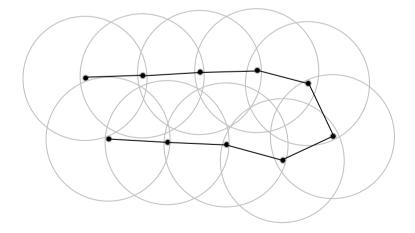
Continuous deformation, flips, etc.



 Rigidity theory: Given a set of rigid bars connected by hinges, rigidity theory studies whether you can move them continuously.

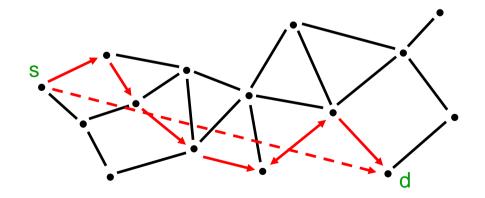
Simple hop-based algorithms

- Algorithm
 - Get graph distance h to anchor(s)
 - Intersect circles around anchors
 - radius = distance to anchor
 - Choose point such that maximum error is minimal
 - Find enclosing circle (ball) of minimal radius
 - Center is calculated location
- In higher dimensions: $1 < d \le h$
 - Rule of thumb: Sparse graph
 → bad performance



How about no anchors at all...?

- In absence of anchors...
 - → ...nodes are clueless about real coordinates.
- For many applications, real coordinates are not necessary
 - → Virtual coordinates are sufficient
 - → Geometric Routing requires only virtual coordinates
 - Require no routing tables
 - Resource-frugal and scalable



Virtual Coordinates

Idea:

Close-by nodes have similar coordinates

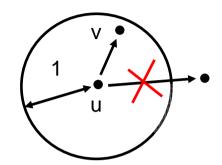
Distant nodes have very different coordinates

→ Similar coordinates imply physical proximity!

- Applications
 - Geometric Routing
 - Locality-sensitive queries
 - Obtaining meta information on the network
 - Anycast services ("Which of the service nodes is closest to me?")
 - Outside the sensor network domain: e.g., Internet mapping

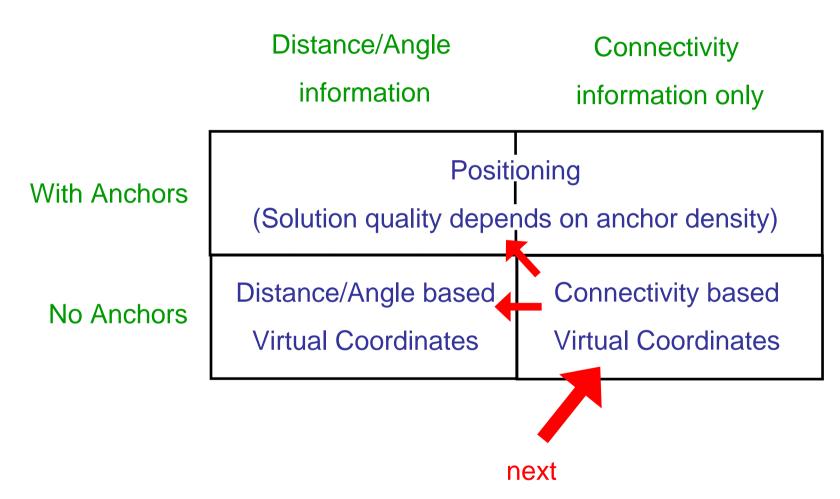
Model

- Unit Disk Graph (UDG) to model wireless multi-hop network
 - Two nodes can communicate iff
 Euclidean distance is at most 1



- Sensor nodes may not be capable of
 - Sensing directions to neighbors
 - Measuring distances to neighbors
- Goal: Derive topologically correct coordinate information from connectivity information only.
 - Even the simplest nodes can derive connectivity information

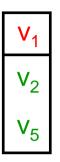
Context

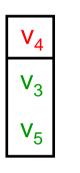


>O

Virtual Coordinates ← UDG Embedding

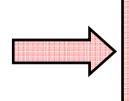
Given the connectivity information for each node...





...and knowing the underlying graph is a UDG...

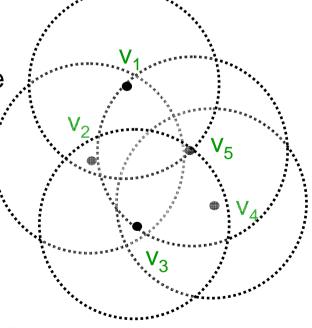
...find a UDG embedding in the plane such that all connectivity requirements are fulfilled! (→ Find a realization of a UDG)



This problem is NP-hard!

(Simple reduction to UDG-recognition problem, which is NP-hard)

[Breu, Kirkpatrick, Comp.Geom.Theory 1998]



UDG Approximation – Quality of Embedding

- Finding an exact realization of a UDG is NP-hard.
 - → Find an embedding r(G) which approximates a realization.
- Particularly,
 - → Map adjacent vertices (edges) to points which are close together.
 - → Map non-adjacent vertices ("non-edges") to far apart points.
- Define quality of embedding q(r(G)) as:

Ratio between longest edge to shortest non-edge in the embedding.

Let $\rho(u,v)$ be the distance between points u and v in the embedding.

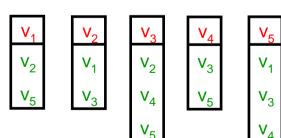
$$q(r(G)) := \frac{\max_{\{u,v\} \in E} \rho(u,v)}{\min_{\{u',v'\} \notin E} \rho(u',v')}$$

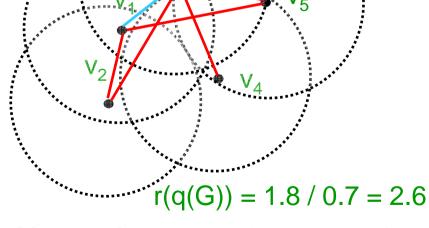
UDG Approximation

 For each UDG G, there exists an embedding r(G), such that, q(r(G)) ≤ 1.
 (a realization of G)

$$q(r(G)) := \frac{\max_{\{u,v\} \in E} \rho(u,v)}{\min_{\{u',v'\} \notin E} \rho(u',v')}$$

- Finding such an embedding is NP-hard
- An algorithm ALG achieves approximation ratio α if for all unit disk graphs G, $q(r_{ALG}(G)) \le \alpha$.
- Example:





Some Results

- There are a few virtual coordinates algorithms
 All of them evaluated only by simulation on random graphs
- In fact there is only one provable approximation algorithm

There is an algorithm which achieves an approximation ratio of $O(\log^{2.5} n \sqrt{\log \log n})$, n being the number of nodes in G.

Plus there are lower bounds on the approximability.

There is no algorithm with approximation ratio better than $\sqrt{3/2} - \epsilon$, unless P=NP.

Approximation Algorithm: Overview

- Four major steps
 - Compute metric on MIS of input graph → Spreading constraints (Key conceptual difference to previous approaches!)

- 2. Volume-respecting, high dimensional embedding
- 3. Random projection to 2D
- 4. Final embedding

UDG Graph G with MIS M.

Approximate pairwise distances between nodes such that, MIS nodes are neatly spread out.

Volume respecting embedding of nodes in \mathbb{R}^n with small distortion.

Nodes spread out fairly well in \mathbb{R}^2 .

Final embedding of G in \mathbb{R}^2 .

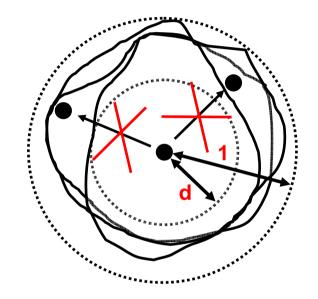
Lower Bound: Quasi Unit Disk Graph

Definition Quasi Unit Disk Graph:

Let $V \in \mathbf{R}^2$, and $d \in [0,1]$. The symmetric Euclidean graph G=(V,E), such that for any pair $u,v \in V$

- dist(u,v) \leq d \Rightarrow {u,v} \in E
- dist(u,v) > 1 \Rightarrow {u,v} \notin E

is called d-quasi unit disk graph.



Note that between d and 1, the existence of an edge is unspecified.

Reduction

- We want to show that finding an embedding with $q(r(G)) \le \sqrt{3/2} \epsilon$, where ϵ goes to 0 for n $\rightarrow \infty$ is NP-hard.
- We prove an equivalent statement:

Given a unit disk graph G=(V,E), it is NP-hard to find a realization of G as a d-quasi unit disk graph with $d \ge \sqrt{2/3} + \epsilon$, where ϵ tends to 0 for $n \to \infty$.

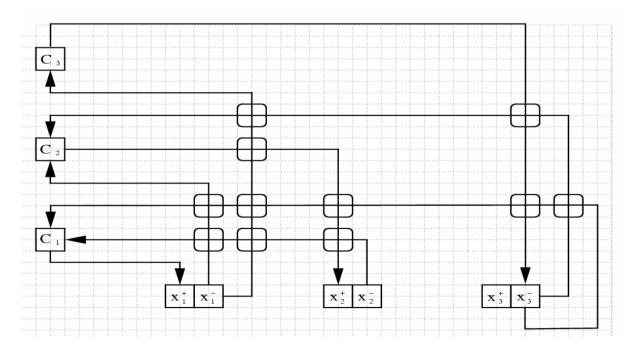
- → Even when allowing non-edges to be smaller than 1, embedding a unit disk graph remains NP-hard!
- \rightarrow It follows that finding an approximation ratio better than $\sqrt{3/2} \epsilon$ is also NP-hard.

Reduction

- Reduction from 3-SAT (each variable appears in at most 3 clauses)
- Given a instance C of this 3-SAT, we give a polynomial time construction of $G_C=(V_C, E_C)$ such that the following holds:
 - C is satisfiable \Rightarrow G_C is realizable as a unit disk graph
 - C is not satisfiable \Rightarrow G_C is not realizable as a d-quasi unit disk graph with $d \geq \sqrt{2/3} + \epsilon$
- Unless P=NP, there is no approximation algorithm with approximation ratio better than $\sqrt{3/2} \epsilon$.

Proof idea

- Construct a grid drawing of the SAT instance.
- Grid drawing is orientable iff SAT instance is satisfiable.
- Grid components (clauses, literals, wires, crossings,...) are composed of nodes → Graph G_C.
- G_C is realizable as a d-quasi unit disk graph with $d \ge \sqrt{2/3 + \epsilon}$ iff grid drawing is orientable.



Summary

- Virtual coordinates problem is important!
- Natural formulation as unit disk graph embedding.
 - → Clear-cut optimization problem.

Upper Bound : $\alpha \in O(\log^{2.5} n \sqrt{\log \log n})$ Lower Bound : $\alpha \ge \sqrt{3/2 - \epsilon}$

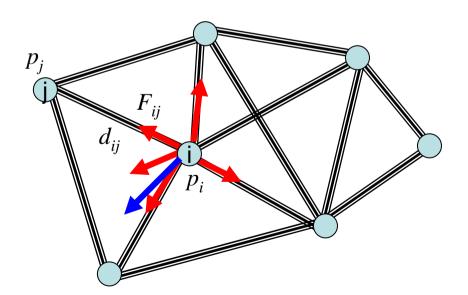
→ Gap between upper and lower bound is huge!

Open Problems:

- Diminish gap between upper and lower bound
- Distributed Algorithm

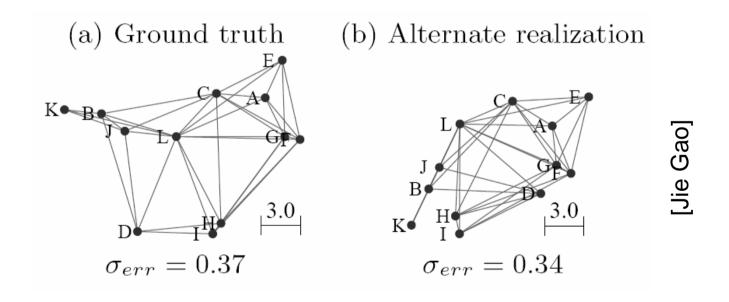
Heuristics: Spring embedder

- Nodes are "masses", edges are "springs".
- Length of the spring equals the distance measurement.
- Springs put forces to the nodes, nodes move, until stabilization.
- Force: $F_{ij} = d_{ij} r_{ij}$, along the direction $p_i p_j$.
- Total force on n_i : $F_i = \sum F_{ii}$.
- Move the node n_i by a small distance (proportional to F_i).



Spring Embedder Discussion

- Problems:
 - may deadlock in local minimum
 - may never converge/stabilize (e.g. just two nodes)
- Solution: Need to start from a reasonably good initial estimation.



[Fleischer & Pich]

N.B. Priyantha, H. Balakrishnan, E. Demaine, S. Teller: **Anchor-Free Distributed Localization** in Sensor Networks, *SenSys*, 2003.

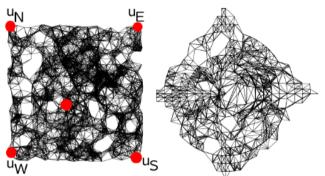
iterative process minimizes the layout energy

$$E(p) = \sum_{\{i,j\} \in E} \left(||p_i - p_j|| - \ell_{ij} \right)^2$$

- fact: layouts can have foldovers without violating the distance constraints
- problem: optimization can converge to such a local optimum
- Solution: find a good initial layout fold-free → already close to the global optimum (="real layout")

Phase 1: compute initial layout

- determine periphery nodes u_N, u_S, u_W, u_E
- determine central node u_C
- use polar coordinates



 $ho_V = d(\mathbf{v}, u_C)$ $\theta_V = \arctan\left(rac{d(\mathbf{v}, u_N) - d(\mathbf{v}, u_S)}{d(\mathbf{v}, u_W) - d(\mathbf{v}, u_F)}
ight)$

as positions of node v

Phase 2: Spring Embedder

[Fleischer & Pich]

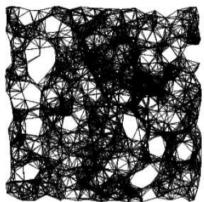
Heuristics: Gotsman et al.

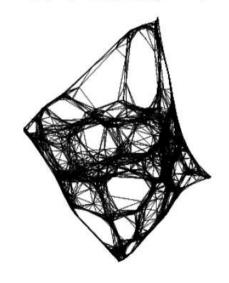
C. Gotsman, Y. Koren [5]. **Distributed Graph Layout for Sensor Networks**, *GD*, 2004.

- initial placement: spread sensors $\frac{\sum_{\{i,j\}\in E} \exp(-\ell_{ij})||p_i-p_j||^2}{\sum_{i< j} ||p_i-p_j||^2} \to \min$
- linear algebra: minimized by second highest eigenvector v₂ of A where

$$egin{aligned} a_{ij} &= -rac{\mathsf{exp}(-\ell_{ij})}{\sum_{j:\{i,j\}\in E}\mathsf{exp}(-\ell_{ij})} \ a_{ij} &= 1 \end{aligned}$$

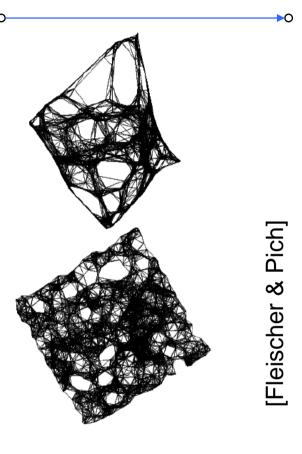
- \triangleright x, Ax, A^2x, A^3x, \dots converges to v_2
- compute third eigenvector v₃, use v₂, v₃ as coordinates





Continued

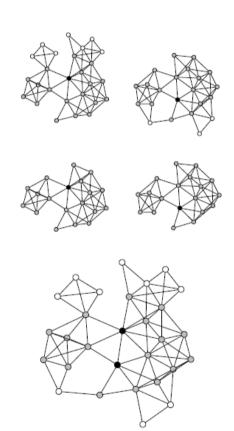
- distributed optimization (spring model)
- alternative: majorization
- compute sequence of layouts $p^{(0)}, p^{(1)}, p^{(2)}, \ldots$ with $E(p^{(0)}) \geq E(p^{(1)}) \geq E(p^{(2)}) \geq \ldots$
 - solve linear equation $L^{(t+1)}p^{(t+1)} = L^{(t)}p^{(t)}$ in distributed manner



Heuristics: Shang et al.

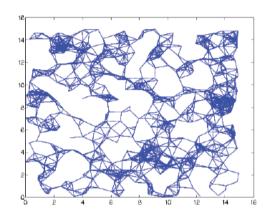
Y. Shang, W. Ruml [7]. **Improved MDS-based Localization**, *IEEE Infocom*, 2004.

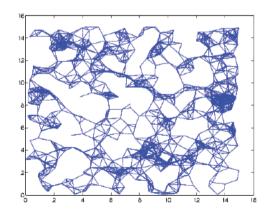
- compute a local map for each node (local MDS of the 2-hop neighborhood)
- merge local map patches into a global map (use incremental or binary-tree strategy)
- apply distributed optimization to the result



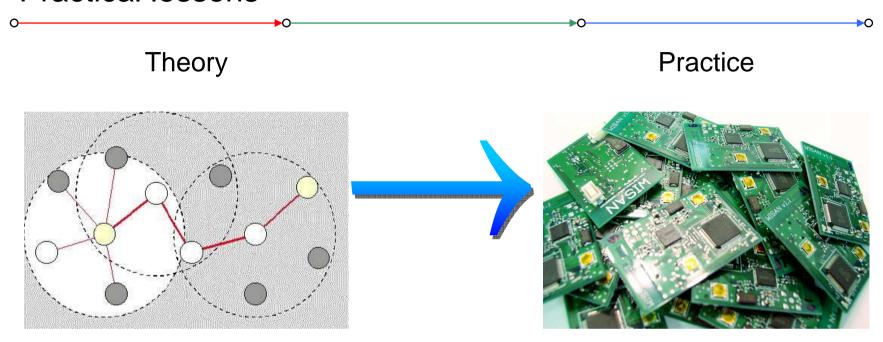
J. Bruck, J. Gao, A. Jiang [8]. Localization and Routing in Sensor Networks by Local Angle Information, Mobile Ad Hoc Networking & Computing, 2005.

- Choose an edge e as x-axis to obtain absolute angles.
- ▶ Form an LP whose variables are the edge lengths $\ell(e)$.
- ▶ For all edges $0 \le \ell(e) \le 1$.
- For any cycle e_1, \ldots, e_p : $\sum_{i=1}^{p} \ell(e_i) \cos \theta_i = 0 \text{ and }$ $\sum_{i=1}^{p} \ell(e_i) \sin \theta_i = 0.$
- Non-adjacent node pair constraints.
- Crossing-edge constraints.





Practical lessons



- RSSI in sensor networks: good, but not for "reasonable" localization
- For exact indoor localization
 - Buy special hardware (e.g., UWB)
 - Place huge amount of short range anchors for single-hop localization

